Metamath Proof Explorer


Theorem 3eqtrd

Description: A deduction from three chained equalities. (Contributed by NM, 29-Oct-1995)

Ref Expression
Hypotheses 3eqtrd.1 φA=B
3eqtrd.2 φB=C
3eqtrd.3 φC=D
Assertion 3eqtrd φA=D

Proof

Step Hyp Ref Expression
1 3eqtrd.1 φA=B
2 3eqtrd.2 φB=C
3 3eqtrd.3 φC=D
4 2 3 eqtrd φB=D
5 1 4 eqtrd φA=D