Metamath Proof Explorer


Theorem 3imtr4g

Description: More general version of 3imtr4i . Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996) (Proof shortened by Wolf Lammen, 20-Dec-2013)

Ref Expression
Hypotheses 3imtr4g.1 φψχ
3imtr4g.2 θψ
3imtr4g.3 τχ
Assertion 3imtr4g φθτ

Proof

Step Hyp Ref Expression
1 3imtr4g.1 φψχ
2 3imtr4g.2 θψ
3 3imtr4g.3 τχ
4 2 1 biimtrid φθχ
5 4 3 imbitrrdi φθτ