Metamath Proof Explorer


Theorem 3oalem1

Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses 3oalem1.1 BC
3oalem1.2 CC
3oalem1.3 RC
3oalem1.4 SC
Assertion 3oalem1 xByRv=x+yzCwSv=z+wxyvzw

Proof

Step Hyp Ref Expression
1 3oalem1.1 BC
2 3oalem1.2 CC
3 3oalem1.3 RC
4 3oalem1.4 SC
5 1 cheli xBx
6 3 cheli yRy
7 5 6 anim12i xByRxy
8 hvaddcl xyx+y
9 eleq1 v=x+yvx+y
10 8 9 syl5ibrcom xyv=x+yv
11 10 imdistani xyv=x+yxyv
12 7 11 sylan xByRv=x+yxyv
13 2 cheli zCz
14 4 cheli wSw
15 13 14 anim12i zCwSzw
16 15 adantr zCwSv=z+wzw
17 12 16 anim12i xByRv=x+yzCwSv=z+wxyvzw