| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3oalem1.1 |
|
| 2 |
|
3oalem1.2 |
|
| 3 |
|
3oalem1.3 |
|
| 4 |
|
3oalem1.4 |
|
| 5 |
|
simplll |
|
| 6 |
|
simpllr |
|
| 7 |
1 2 3 4
|
3oalem1 |
|
| 8 |
|
hvaddsub12 |
|
| 9 |
8
|
3anidm23 |
|
| 10 |
|
hvsubid |
|
| 11 |
10
|
oveq2d |
|
| 12 |
|
ax-hvaddid |
|
| 13 |
11 12
|
sylan9eqr |
|
| 14 |
9 13
|
eqtr3d |
|
| 15 |
14
|
ad2ant2l |
|
| 16 |
15
|
adantlr |
|
| 17 |
7 16
|
syl |
|
| 18 |
|
simprlr |
|
| 19 |
|
eqtr2 |
|
| 20 |
19
|
oveq1d |
|
| 21 |
20
|
ad2ant2l |
|
| 22 |
|
simpl |
|
| 23 |
22
|
anim1i |
|
| 24 |
|
hvsub4 |
|
| 25 |
23 24
|
syldan |
|
| 26 |
|
hvsubid |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
27
|
oveq1d |
|
| 29 |
|
hvsubcl |
|
| 30 |
|
hvaddlid |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
adantll |
|
| 33 |
25 28 32
|
3eqtrd |
|
| 34 |
33
|
ad2ant2rl |
|
| 35 |
7 34
|
syl |
|
| 36 |
|
simpr |
|
| 37 |
|
simpr |
|
| 38 |
37
|
anim2i |
|
| 39 |
|
hvsub4 |
|
| 40 |
36 38 39
|
syl2anc |
|
| 41 |
10
|
ad2antll |
|
| 42 |
41
|
oveq2d |
|
| 43 |
|
hvsubcl |
|
| 44 |
|
ax-hvaddid |
|
| 45 |
43 44
|
syl |
|
| 46 |
45
|
ancoms |
|
| 47 |
46
|
adantrr |
|
| 48 |
40 42 47
|
3eqtrd |
|
| 49 |
48
|
adantlr |
|
| 50 |
49
|
adantlr |
|
| 51 |
7 50
|
syl |
|
| 52 |
21 35 51
|
3eqtr3d |
|
| 53 |
|
simpll |
|
| 54 |
|
simpll |
|
| 55 |
2
|
chshii |
|
| 56 |
1
|
chshii |
|
| 57 |
55 56
|
shsvsi |
|
| 58 |
57
|
ancoms |
|
| 59 |
56 55
|
shscomi |
|
| 60 |
58 59
|
eleqtrrdi |
|
| 61 |
53 54 60
|
syl2an |
|
| 62 |
52 61
|
eqeltrd |
|
| 63 |
|
simplr |
|
| 64 |
|
simplr |
|
| 65 |
3
|
chshii |
|
| 66 |
4
|
chshii |
|
| 67 |
65 66
|
shsvsi |
|
| 68 |
63 64 67
|
syl2an |
|
| 69 |
62 68
|
elind |
|
| 70 |
56 55
|
shscli |
|
| 71 |
65 66
|
shscli |
|
| 72 |
70 71
|
shincli |
|
| 73 |
66 72
|
shsvai |
|
| 74 |
18 69 73
|
syl2anc |
|
| 75 |
17 74
|
eqeltrrd |
|
| 76 |
6 75
|
elind |
|
| 77 |
66 72
|
shscli |
|
| 78 |
65 77
|
shincli |
|
| 79 |
56 78
|
shsvai |
|
| 80 |
5 76 79
|
syl2anc |
|
| 81 |
|
eleq1 |
|
| 82 |
81
|
ad2antlr |
|
| 83 |
80 82
|
mpbird |
|