Metamath Proof Explorer


Theorem 3prm

Description: 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion 3prm 3

Proof

Step Hyp Ref Expression
1 3z 3
2 1lt3 1<3
3 eluz2b1 3231<3
4 1 2 3 mpbir2an 32
5 elfz1eq z22z=2
6 n2dvds3 ¬23
7 breq1 z=2z323
8 6 7 mtbiri z=2¬z3
9 5 8 syl z22¬z3
10 3m1e2 31=2
11 10 oveq2i 231=22
12 9 11 eleq2s z231¬z3
13 12 rgen z231¬z3
14 isprm3 332z231¬z3
15 4 13 14 mpbir2an 3