Metamath Proof Explorer


Theorem 420lcm8e840

Description: The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion 420lcm8e840 420lcm8=840

Proof

Step Hyp Ref Expression
1 4nn0 40
2 2nn 2
3 1 2 decnncl 42
4 3 decnncl2 420
5 8nn 8
6 4nn 4
7 8nn0 80
8 7 6 decnncl 84
9 8 decnncl2 840
10 420gcd8e4 420gcd8=4
11 eqid 4840=4840
12 4 5 mulcomnni 4208=8420
13 4t2e8 42=8
14 13 oveq1i 42420=8420
15 12 14 eqtr4i 4208=42420
16 6 2 4 mulassnni 42420=42420
17 15 16 eqtri 4208=42420
18 2 nnnn0i 20
19 3 nnnn0i 420
20 0nn0 00
21 eqid 420=420
22 eqid 42=42
23 4cn 4
24 2cn 2
25 23 24 13 mulcomli 24=8
26 25 oveq1i 24+0=8+0
27 8cn 8
28 27 addridi 8+0=8
29 26 28 eqtri 24+0=8
30 2t2e4 22=4
31 1 dec0h 4=04
32 31 eqcomi 04=4
33 30 32 eqtr4i 22=04
34 18 1 18 22 1 20 29 33 decmul2c 242=84
35 23 addridi 4+0=4
36 7 1 20 34 35 decaddi 242+0=84
37 2t0e0 20=0
38 20 dec0h 0=00
39 38 eqcomi 00=0
40 37 39 eqtr4i 20=00
41 18 19 20 21 20 20 36 40 decmul2c 2420=840
42 41 oveq2i 42420=4840
43 17 42 eqtri 4208=4840
44 4 5 6 9 10 11 43 lcmeprodgcdi 420lcm8=840