Metamath Proof Explorer


Theorem 4atex2-0bOLDN

Description: Same as 4atex2 except that T is zero. (Contributed by NM, 27-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 4that.l ˙ = K
4that.j ˙ = join K
4that.a A = Atoms K
4that.h H = LHyp K
Assertion 4atex2-0bOLDN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W S ˙ z = T ˙ z

Proof

Step Hyp Ref Expression
1 4that.l ˙ = K
2 4that.j ˙ = join K
3 4that.a A = Atoms K
4 4that.h H = LHyp K
5 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H
6 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r P A ¬ P ˙ W
7 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r Q A ¬ Q ˙ W
8 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r T = 0. K
9 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
10 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r S A ¬ S ˙ W
11 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r r A ¬ r ˙ W P ˙ r = Q ˙ r
12 1 2 3 4 4atex2-0aOLDN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W T = 0. K P Q S A ¬ S ˙ W r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W T ˙ z = S ˙ z
13 5 6 7 8 9 10 11 12 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W T ˙ z = S ˙ z
14 eqcom S ˙ z = T ˙ z T ˙ z = S ˙ z
15 14 anbi2i ¬ z ˙ W S ˙ z = T ˙ z ¬ z ˙ W T ˙ z = S ˙ z
16 15 rexbii z A ¬ z ˙ W S ˙ z = T ˙ z z A ¬ z ˙ W T ˙ z = S ˙ z
17 13 16 sylibr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q T = 0. K r A ¬ r ˙ W P ˙ r = Q ˙ r z A ¬ z ˙ W S ˙ z = T ˙ z