Metamath Proof Explorer


Theorem 4atex2-0bOLDN

Description: Same as 4atex2 except that T is zero. (Contributed by NM, 27-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 4that.l ˙=K
4that.j ˙=joinK
4that.a A=AtomsK
4that.h H=LHypK
Assertion 4atex2-0bOLDN KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQT=0.KrA¬r˙WP˙r=Q˙rzA¬z˙WS˙z=T˙z

Proof

Step Hyp Ref Expression
1 4that.l ˙=K
2 4that.j ˙=joinK
3 4that.a A=AtomsK
4 4that.h H=LHypK
5 simp1 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQT=0.KrA¬r˙WP˙r=Q˙rKHLWH
6 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQT=0.KrA¬r˙WP˙r=Q˙rPA¬P˙W
7 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQT=0.KrA¬r˙WP˙r=Q˙rQA¬Q˙W
8 simp32 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQT=0.KrA¬r˙WP˙r=Q˙rT=0.K
9 simp31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQT=0.KrA¬r˙WP˙r=Q˙rPQ
10 simp23 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQT=0.KrA¬r˙WP˙r=Q˙rSA¬S˙W
11 simp33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQT=0.KrA¬r˙WP˙r=Q˙rrA¬r˙WP˙r=Q˙r
12 1 2 3 4 4atex2-0aOLDN KHLWHPA¬P˙WQA¬Q˙WT=0.KPQSA¬S˙WrA¬r˙WP˙r=Q˙rzA¬z˙WT˙z=S˙z
13 5 6 7 8 9 10 11 12 syl133anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQT=0.KrA¬r˙WP˙r=Q˙rzA¬z˙WT˙z=S˙z
14 eqcom S˙z=T˙zT˙z=S˙z
15 14 anbi2i ¬z˙WS˙z=T˙z¬z˙WT˙z=S˙z
16 15 rexbii zA¬z˙WS˙z=T˙zzA¬z˙WT˙z=S˙z
17 13 16 sylibr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQT=0.KrA¬r˙WP˙r=Q˙rzA¬z˙WS˙z=T˙z