Metamath Proof Explorer


Theorem 4atex2

Description: More general version of 4atex for a line S .\/ T not necessarily connected to P .\/ Q . (Contributed by NM, 27-May-2013)

Ref Expression
Hypotheses 4that.l ˙=K
4that.j ˙=joinK
4that.a A=AtomsK
4that.h H=LHypK
Assertion 4atex2 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rzA¬z˙WS˙z=T˙z

Proof

Step Hyp Ref Expression
1 4that.l ˙=K
2 4that.j ˙=joinK
3 4that.a A=AtomsK
4 4that.h H=LHypK
5 oveq1 S=PS˙z=P˙z
6 5 eqeq1d S=PS˙z=T˙zP˙z=T˙z
7 6 anbi2d S=P¬z˙WS˙z=T˙z¬z˙WP˙z=T˙z
8 7 rexbidv S=PzA¬z˙WS˙z=T˙zzA¬z˙WP˙z=T˙z
9 simpl1 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPKHLWH
10 simpl23 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPSA¬S˙W
11 simpl21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPPA¬P˙W
12 simpl32 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPTA
13 simpr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPSP
14 simpl22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPQA¬Q˙W
15 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSA
16 15 adantr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPSA
17 simpl31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPPQ
18 simpl33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPrA¬r˙WP˙r=Q˙r
19 1 2 3 4 4atex KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙ryA¬y˙WP˙y=S˙y
20 9 11 14 16 17 18 19 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPyA¬y˙WP˙y=S˙y
21 eqcom P˙y=S˙yS˙y=P˙y
22 21 anbi2i ¬y˙WP˙y=S˙y¬y˙WS˙y=P˙y
23 22 rexbii yA¬y˙WP˙y=S˙yyA¬y˙WS˙y=P˙y
24 20 23 sylib KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPyA¬y˙WS˙y=P˙y
25 1 2 3 4 4atex KHLWHSA¬S˙WPA¬P˙WTASPyA¬y˙WS˙y=P˙yzA¬z˙WS˙z=T˙z
26 9 10 11 12 13 24 25 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rSPzA¬z˙WS˙z=T˙z
27 simp1 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rKHLWH
28 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rPA¬P˙W
29 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rQA¬Q˙W
30 simp32 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rTA
31 simp31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rPQ
32 simp33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rrA¬r˙WP˙r=Q˙r
33 1 2 3 4 4atex KHLWHPA¬P˙WQA¬Q˙WTAPQrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=T˙z
34 27 28 29 30 31 32 33 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=T˙z
35 8 26 34 pm2.61ne KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQTArA¬r˙WP˙r=Q˙rzA¬z˙WS˙z=T˙z