Metamath Proof Explorer


Theorem 4atex2

Description: More general version of 4atex for a line S .\/ T not necessarily connected to P .\/ Q . (Contributed by NM, 27-May-2013)

Ref Expression
Hypotheses 4that.l = ( le ‘ 𝐾 )
4that.j = ( join ‘ 𝐾 )
4that.a 𝐴 = ( Atoms ‘ 𝐾 )
4that.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion 4atex2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 4that.l = ( le ‘ 𝐾 )
2 4that.j = ( join ‘ 𝐾 )
3 4that.a 𝐴 = ( Atoms ‘ 𝐾 )
4 4that.h 𝐻 = ( LHyp ‘ 𝐾 )
5 oveq1 ( 𝑆 = 𝑃 → ( 𝑆 𝑧 ) = ( 𝑃 𝑧 ) )
6 5 eqeq1d ( 𝑆 = 𝑃 → ( ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ↔ ( 𝑃 𝑧 ) = ( 𝑇 𝑧 ) ) )
7 6 anbi2d ( 𝑆 = 𝑃 → ( ( ¬ 𝑧 𝑊 ∧ ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ) ↔ ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑇 𝑧 ) ) ) )
8 7 rexbidv ( 𝑆 = 𝑃 → ( ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ) ↔ ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑇 𝑧 ) ) ) )
9 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 simpl23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
11 simpl21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
12 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → 𝑇𝐴 )
13 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → 𝑆𝑃 )
14 simpl22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
15 simp23l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑆𝐴 )
16 15 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → 𝑆𝐴 )
17 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → 𝑃𝑄 )
18 simpl33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
19 1 2 3 4 4atex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( 𝑃𝑄 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑦𝐴 ( ¬ 𝑦 𝑊 ∧ ( 𝑃 𝑦 ) = ( 𝑆 𝑦 ) ) )
20 9 11 14 16 17 18 19 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → ∃ 𝑦𝐴 ( ¬ 𝑦 𝑊 ∧ ( 𝑃 𝑦 ) = ( 𝑆 𝑦 ) ) )
21 eqcom ( ( 𝑃 𝑦 ) = ( 𝑆 𝑦 ) ↔ ( 𝑆 𝑦 ) = ( 𝑃 𝑦 ) )
22 21 anbi2i ( ( ¬ 𝑦 𝑊 ∧ ( 𝑃 𝑦 ) = ( 𝑆 𝑦 ) ) ↔ ( ¬ 𝑦 𝑊 ∧ ( 𝑆 𝑦 ) = ( 𝑃 𝑦 ) ) )
23 22 rexbii ( ∃ 𝑦𝐴 ( ¬ 𝑦 𝑊 ∧ ( 𝑃 𝑦 ) = ( 𝑆 𝑦 ) ) ↔ ∃ 𝑦𝐴 ( ¬ 𝑦 𝑊 ∧ ( 𝑆 𝑦 ) = ( 𝑃 𝑦 ) ) )
24 20 23 sylib ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → ∃ 𝑦𝐴 ( ¬ 𝑦 𝑊 ∧ ( 𝑆 𝑦 ) = ( 𝑃 𝑦 ) ) )
25 1 2 3 4 4atex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( 𝑆𝑃 ∧ ∃ 𝑦𝐴 ( ¬ 𝑦 𝑊 ∧ ( 𝑆 𝑦 ) = ( 𝑃 𝑦 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ) )
26 9 10 11 12 13 24 25 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ 𝑆𝑃 ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ) )
27 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
28 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
29 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
30 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑇𝐴 )
31 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝑄 )
32 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
33 1 2 3 4 4atex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑇𝐴 ) ∧ ( 𝑃𝑄 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑇 𝑧 ) ) )
34 27 28 29 30 31 32 33 syl132anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑃 𝑧 ) = ( 𝑇 𝑧 ) ) )
35 8 26 34 pm2.61ne ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄𝑇𝐴 ∧ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ( 𝑆 𝑧 ) = ( 𝑇 𝑧 ) ) )