Metamath Proof Explorer


Theorem 4atlem10b

Description: Lemma for 4at . Substitute V for R (cont.). (Contributed by NM, 10-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem10b KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙V˙W

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simprr KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WS˙P˙Q˙V˙W
5 simprl KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WR˙P˙Q˙V˙W
6 simpl1 KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WKHLPAQA
7 simpl21 KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WRA
8 simpl23 KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WVA
9 simpl31 KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WWA
10 simpl32 KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙W¬R˙P˙Q˙W
11 1 2 3 4atlem10a KHLPAQARAVAWA¬R˙P˙Q˙WR˙P˙Q˙V˙WP˙Q˙R˙W=P˙Q˙V˙W
12 6 7 8 9 10 11 syl131anc KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WR˙P˙Q˙V˙WP˙Q˙R˙W=P˙Q˙V˙W
13 5 12 mpbid KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙R˙W=P˙Q˙V˙W
14 4 13 breqtrrd KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WS˙P˙Q˙R˙W
15 simpl22 KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WSA
16 simpl33 KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙W¬S˙P˙Q˙R
17 1 2 3 4atlem9 KHLPAQARASAWA¬S˙P˙Q˙RS˙P˙Q˙R˙WP˙Q˙R˙S=P˙Q˙R˙W
18 6 7 15 9 16 17 syl131anc KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WS˙P˙Q˙R˙WP˙Q˙R˙S=P˙Q˙R˙W
19 14 18 mpbid KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙R˙W
20 19 13 eqtrd KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙V˙W