Metamath Proof Explorer


Theorem 4fppr1

Description: 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023)

Ref Expression
Assertion 4fppr1 4 FPPr 1

Proof

Step Hyp Ref Expression
1 4z 4
2 uzid 4 4 4
3 1 2 ax-mp 4 4
4 4nprm ¬ 4
5 4 nelir 4
6 4m1e3 4 1 = 3
7 6 oveq2i 1 4 1 = 1 3
8 3z 3
9 1exp 3 1 3 = 1
10 8 9 ax-mp 1 3 = 1
11 7 10 eqtri 1 4 1 = 1
12 11 oveq1i 1 4 1 mod 4 = 1 mod 4
13 4re 4
14 1lt4 1 < 4
15 1mod 4 1 < 4 1 mod 4 = 1
16 13 14 15 mp2an 1 mod 4 = 1
17 12 16 eqtri 1 4 1 mod 4 = 1
18 1nn 1
19 fpprel 1 4 FPPr 1 4 4 4 1 4 1 mod 4 = 1
20 18 19 ax-mp 4 FPPr 1 4 4 4 1 4 1 mod 4 = 1
21 3 5 17 20 mpbir3an 4 FPPr 1