Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension 2)
Fermat pseudoprimes
4fppr1
Next ⟩
8exp8mod9
Metamath Proof Explorer
Ascii
Unicode
Theorem
4fppr1
Description:
4 is the (smallest) Fermat pseudoprime to the base 1.
(Contributed by
AV
, 3-Jun-2023)
Ref
Expression
Assertion
4fppr1
⊢
4
∈
FPPr
⁡
1
Proof
Step
Hyp
Ref
Expression
1
4z
⊢
4
∈
ℤ
2
uzid
⊢
4
∈
ℤ
→
4
∈
ℤ
≥
4
3
1
2
ax-mp
⊢
4
∈
ℤ
≥
4
4
4nprm
⊢
¬
4
∈
ℙ
5
4
nelir
⊢
4
∉
ℙ
6
4m1e3
⊢
4
−
1
=
3
7
6
oveq2i
⊢
1
4
−
1
=
1
3
8
3z
⊢
3
∈
ℤ
9
1exp
⊢
3
∈
ℤ
→
1
3
=
1
10
8
9
ax-mp
⊢
1
3
=
1
11
7
10
eqtri
⊢
1
4
−
1
=
1
12
11
oveq1i
⊢
1
4
−
1
mod
4
=
1
mod
4
13
4re
⊢
4
∈
ℝ
14
1lt4
⊢
1
<
4
15
1mod
⊢
4
∈
ℝ
∧
1
<
4
→
1
mod
4
=
1
16
13
14
15
mp2an
⊢
1
mod
4
=
1
17
12
16
eqtri
⊢
1
4
−
1
mod
4
=
1
18
1nn
⊢
1
∈
ℕ
19
fpprel
⊢
1
∈
ℕ
→
4
∈
FPPr
⁡
1
↔
4
∈
ℤ
≥
4
∧
4
∉
ℙ
∧
1
4
−
1
mod
4
=
1
20
18
19
ax-mp
⊢
4
∈
FPPr
⁡
1
↔
4
∈
ℤ
≥
4
∧
4
∉
ℙ
∧
1
4
−
1
mod
4
=
1
21
3
5
17
20
mpbir3an
⊢
4
∈
FPPr
⁡
1