Step |
Hyp |
Ref |
Expression |
1 |
|
4z |
|- 4 e. ZZ |
2 |
|
uzid |
|- ( 4 e. ZZ -> 4 e. ( ZZ>= ` 4 ) ) |
3 |
1 2
|
ax-mp |
|- 4 e. ( ZZ>= ` 4 ) |
4 |
|
4nprm |
|- -. 4 e. Prime |
5 |
4
|
nelir |
|- 4 e/ Prime |
6 |
|
4m1e3 |
|- ( 4 - 1 ) = 3 |
7 |
6
|
oveq2i |
|- ( 1 ^ ( 4 - 1 ) ) = ( 1 ^ 3 ) |
8 |
|
3z |
|- 3 e. ZZ |
9 |
|
1exp |
|- ( 3 e. ZZ -> ( 1 ^ 3 ) = 1 ) |
10 |
8 9
|
ax-mp |
|- ( 1 ^ 3 ) = 1 |
11 |
7 10
|
eqtri |
|- ( 1 ^ ( 4 - 1 ) ) = 1 |
12 |
11
|
oveq1i |
|- ( ( 1 ^ ( 4 - 1 ) ) mod 4 ) = ( 1 mod 4 ) |
13 |
|
4re |
|- 4 e. RR |
14 |
|
1lt4 |
|- 1 < 4 |
15 |
|
1mod |
|- ( ( 4 e. RR /\ 1 < 4 ) -> ( 1 mod 4 ) = 1 ) |
16 |
13 14 15
|
mp2an |
|- ( 1 mod 4 ) = 1 |
17 |
12 16
|
eqtri |
|- ( ( 1 ^ ( 4 - 1 ) ) mod 4 ) = 1 |
18 |
|
1nn |
|- 1 e. NN |
19 |
|
fpprel |
|- ( 1 e. NN -> ( 4 e. ( FPPr ` 1 ) <-> ( 4 e. ( ZZ>= ` 4 ) /\ 4 e/ Prime /\ ( ( 1 ^ ( 4 - 1 ) ) mod 4 ) = 1 ) ) ) |
20 |
18 19
|
ax-mp |
|- ( 4 e. ( FPPr ` 1 ) <-> ( 4 e. ( ZZ>= ` 4 ) /\ 4 e/ Prime /\ ( ( 1 ^ ( 4 - 1 ) ) mod 4 ) = 1 ) ) |
21 |
3 5 17 20
|
mpbir3an |
|- 4 e. ( FPPr ` 1 ) |