| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4z |  |-  4 e. ZZ | 
						
							| 2 |  | uzid |  |-  ( 4 e. ZZ -> 4 e. ( ZZ>= ` 4 ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  4 e. ( ZZ>= ` 4 ) | 
						
							| 4 |  | 4nprm |  |-  -. 4 e. Prime | 
						
							| 5 | 4 | nelir |  |-  4 e/ Prime | 
						
							| 6 |  | 4m1e3 |  |-  ( 4 - 1 ) = 3 | 
						
							| 7 | 6 | oveq2i |  |-  ( 1 ^ ( 4 - 1 ) ) = ( 1 ^ 3 ) | 
						
							| 8 |  | 3z |  |-  3 e. ZZ | 
						
							| 9 |  | 1exp |  |-  ( 3 e. ZZ -> ( 1 ^ 3 ) = 1 ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( 1 ^ 3 ) = 1 | 
						
							| 11 | 7 10 | eqtri |  |-  ( 1 ^ ( 4 - 1 ) ) = 1 | 
						
							| 12 | 11 | oveq1i |  |-  ( ( 1 ^ ( 4 - 1 ) ) mod 4 ) = ( 1 mod 4 ) | 
						
							| 13 |  | 4re |  |-  4 e. RR | 
						
							| 14 |  | 1lt4 |  |-  1 < 4 | 
						
							| 15 |  | 1mod |  |-  ( ( 4 e. RR /\ 1 < 4 ) -> ( 1 mod 4 ) = 1 ) | 
						
							| 16 | 13 14 15 | mp2an |  |-  ( 1 mod 4 ) = 1 | 
						
							| 17 | 12 16 | eqtri |  |-  ( ( 1 ^ ( 4 - 1 ) ) mod 4 ) = 1 | 
						
							| 18 |  | 1nn |  |-  1 e. NN | 
						
							| 19 |  | fpprel |  |-  ( 1 e. NN -> ( 4 e. ( FPPr ` 1 ) <-> ( 4 e. ( ZZ>= ` 4 ) /\ 4 e/ Prime /\ ( ( 1 ^ ( 4 - 1 ) ) mod 4 ) = 1 ) ) ) | 
						
							| 20 | 18 19 | ax-mp |  |-  ( 4 e. ( FPPr ` 1 ) <-> ( 4 e. ( ZZ>= ` 4 ) /\ 4 e/ Prime /\ ( ( 1 ^ ( 4 - 1 ) ) mod 4 ) = 1 ) ) | 
						
							| 21 | 3 5 17 20 | mpbir3an |  |-  4 e. ( FPPr ` 1 ) |