Step |
Hyp |
Ref |
Expression |
1 |
|
4z |
⊢ 4 ∈ ℤ |
2 |
|
uzid |
⊢ ( 4 ∈ ℤ → 4 ∈ ( ℤ≥ ‘ 4 ) ) |
3 |
1 2
|
ax-mp |
⊢ 4 ∈ ( ℤ≥ ‘ 4 ) |
4 |
|
4nprm |
⊢ ¬ 4 ∈ ℙ |
5 |
4
|
nelir |
⊢ 4 ∉ ℙ |
6 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
7 |
6
|
oveq2i |
⊢ ( 1 ↑ ( 4 − 1 ) ) = ( 1 ↑ 3 ) |
8 |
|
3z |
⊢ 3 ∈ ℤ |
9 |
|
1exp |
⊢ ( 3 ∈ ℤ → ( 1 ↑ 3 ) = 1 ) |
10 |
8 9
|
ax-mp |
⊢ ( 1 ↑ 3 ) = 1 |
11 |
7 10
|
eqtri |
⊢ ( 1 ↑ ( 4 − 1 ) ) = 1 |
12 |
11
|
oveq1i |
⊢ ( ( 1 ↑ ( 4 − 1 ) ) mod 4 ) = ( 1 mod 4 ) |
13 |
|
4re |
⊢ 4 ∈ ℝ |
14 |
|
1lt4 |
⊢ 1 < 4 |
15 |
|
1mod |
⊢ ( ( 4 ∈ ℝ ∧ 1 < 4 ) → ( 1 mod 4 ) = 1 ) |
16 |
13 14 15
|
mp2an |
⊢ ( 1 mod 4 ) = 1 |
17 |
12 16
|
eqtri |
⊢ ( ( 1 ↑ ( 4 − 1 ) ) mod 4 ) = 1 |
18 |
|
1nn |
⊢ 1 ∈ ℕ |
19 |
|
fpprel |
⊢ ( 1 ∈ ℕ → ( 4 ∈ ( FPPr ‘ 1 ) ↔ ( 4 ∈ ( ℤ≥ ‘ 4 ) ∧ 4 ∉ ℙ ∧ ( ( 1 ↑ ( 4 − 1 ) ) mod 4 ) = 1 ) ) ) |
20 |
18 19
|
ax-mp |
⊢ ( 4 ∈ ( FPPr ‘ 1 ) ↔ ( 4 ∈ ( ℤ≥ ‘ 4 ) ∧ 4 ∉ ℙ ∧ ( ( 1 ↑ ( 4 − 1 ) ) mod 4 ) = 1 ) ) |
21 |
3 5 17 20
|
mpbir3an |
⊢ 4 ∈ ( FPPr ‘ 1 ) |