| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 2 |  | uzid | ⊢ ( 4  ∈  ℤ  →  4  ∈  ( ℤ≥ ‘ 4 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ 4  ∈  ( ℤ≥ ‘ 4 ) | 
						
							| 4 |  | 4nprm | ⊢ ¬  4  ∈  ℙ | 
						
							| 5 | 4 | nelir | ⊢ 4  ∉  ℙ | 
						
							| 6 |  | 4m1e3 | ⊢ ( 4  −  1 )  =  3 | 
						
							| 7 | 6 | oveq2i | ⊢ ( 1 ↑ ( 4  −  1 ) )  =  ( 1 ↑ 3 ) | 
						
							| 8 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 9 |  | 1exp | ⊢ ( 3  ∈  ℤ  →  ( 1 ↑ 3 )  =  1 ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( 1 ↑ 3 )  =  1 | 
						
							| 11 | 7 10 | eqtri | ⊢ ( 1 ↑ ( 4  −  1 ) )  =  1 | 
						
							| 12 | 11 | oveq1i | ⊢ ( ( 1 ↑ ( 4  −  1 ) )  mod  4 )  =  ( 1  mod  4 ) | 
						
							| 13 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 14 |  | 1lt4 | ⊢ 1  <  4 | 
						
							| 15 |  | 1mod | ⊢ ( ( 4  ∈  ℝ  ∧  1  <  4 )  →  ( 1  mod  4 )  =  1 ) | 
						
							| 16 | 13 14 15 | mp2an | ⊢ ( 1  mod  4 )  =  1 | 
						
							| 17 | 12 16 | eqtri | ⊢ ( ( 1 ↑ ( 4  −  1 ) )  mod  4 )  =  1 | 
						
							| 18 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 19 |  | fpprel | ⊢ ( 1  ∈  ℕ  →  ( 4  ∈  (  FPPr  ‘ 1 )  ↔  ( 4  ∈  ( ℤ≥ ‘ 4 )  ∧  4  ∉  ℙ  ∧  ( ( 1 ↑ ( 4  −  1 ) )  mod  4 )  =  1 ) ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( 4  ∈  (  FPPr  ‘ 1 )  ↔  ( 4  ∈  ( ℤ≥ ‘ 4 )  ∧  4  ∉  ℙ  ∧  ( ( 1 ↑ ( 4  −  1 ) )  mod  4 )  =  1 ) ) | 
						
							| 21 | 3 5 17 20 | mpbir3an | ⊢ 4  ∈  (  FPPr  ‘ 1 ) |