Metamath Proof Explorer


Theorem 4fppr1

Description: 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023)

Ref Expression
Assertion 4fppr1 4 ∈ ( FPPr ‘ 1 )

Proof

Step Hyp Ref Expression
1 4z 4 ∈ ℤ
2 uzid ( 4 ∈ ℤ → 4 ∈ ( ℤ ‘ 4 ) )
3 1 2 ax-mp 4 ∈ ( ℤ ‘ 4 )
4 4nprm ¬ 4 ∈ ℙ
5 4 nelir 4 ∉ ℙ
6 4m1e3 ( 4 − 1 ) = 3
7 6 oveq2i ( 1 ↑ ( 4 − 1 ) ) = ( 1 ↑ 3 )
8 3z 3 ∈ ℤ
9 1exp ( 3 ∈ ℤ → ( 1 ↑ 3 ) = 1 )
10 8 9 ax-mp ( 1 ↑ 3 ) = 1
11 7 10 eqtri ( 1 ↑ ( 4 − 1 ) ) = 1
12 11 oveq1i ( ( 1 ↑ ( 4 − 1 ) ) mod 4 ) = ( 1 mod 4 )
13 4re 4 ∈ ℝ
14 1lt4 1 < 4
15 1mod ( ( 4 ∈ ℝ ∧ 1 < 4 ) → ( 1 mod 4 ) = 1 )
16 13 14 15 mp2an ( 1 mod 4 ) = 1
17 12 16 eqtri ( ( 1 ↑ ( 4 − 1 ) ) mod 4 ) = 1
18 1nn 1 ∈ ℕ
19 fpprel ( 1 ∈ ℕ → ( 4 ∈ ( FPPr ‘ 1 ) ↔ ( 4 ∈ ( ℤ ‘ 4 ) ∧ 4 ∉ ℙ ∧ ( ( 1 ↑ ( 4 − 1 ) ) mod 4 ) = 1 ) ) )
20 18 19 ax-mp ( 4 ∈ ( FPPr ‘ 1 ) ↔ ( 4 ∈ ( ℤ ‘ 4 ) ∧ 4 ∉ ℙ ∧ ( ( 1 ↑ ( 4 − 1 ) ) mod 4 ) = 1 ) )
21 3 5 17 20 mpbir3an 4 ∈ ( FPPr ‘ 1 )