Metamath Proof Explorer
Description: 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014)
(Revised by Mario Carneiro, 20-Apr-2015)
|
|
Ref |
Expression |
|
Assertion |
5prm |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5nn |
|
| 2 |
|
1lt5 |
|
| 3 |
|
2nn |
|
| 4 |
|
2nn0 |
|
| 5 |
|
1nn |
|
| 6 |
|
2t2e4 |
|
| 7 |
6
|
oveq1i |
|
| 8 |
|
df-5 |
|
| 9 |
7 8
|
eqtr4i |
|
| 10 |
|
1lt2 |
|
| 11 |
3 4 5 9 10
|
ndvdsi |
|
| 12 |
|
3nn |
|
| 13 |
|
1nn0 |
|
| 14 |
|
3t1e3 |
|
| 15 |
14
|
oveq1i |
|
| 16 |
|
3p2e5 |
|
| 17 |
15 16
|
eqtri |
|
| 18 |
|
2lt3 |
|
| 19 |
12 13 3 17 18
|
ndvdsi |
|
| 20 |
|
5nn0 |
|
| 21 |
|
5lt10 |
|
| 22 |
3 20 20 21
|
declti |
|
| 23 |
1 2 11 19 22
|
prmlem1 |
|