Metamath Proof Explorer


Theorem 5prm

Description: 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 5prm 5

Proof

Step Hyp Ref Expression
1 5nn 5
2 1lt5 1<5
3 2nn 2
4 2nn0 20
5 1nn 1
6 2t2e4 22=4
7 6 oveq1i 22+1=4+1
8 df-5 5=4+1
9 7 8 eqtr4i 22+1=5
10 1lt2 1<2
11 3 4 5 9 10 ndvdsi ¬25
12 3nn 3
13 1nn0 10
14 3t1e3 31=3
15 14 oveq1i 31+2=3+2
16 3p2e5 3+2=5
17 15 16 eqtri 31+2=5
18 2lt3 2<3
19 12 13 3 17 18 ndvdsi ¬35
20 5nn0 50
21 5lt10 5<10
22 3 20 20 21 declti 5<25
23 1 2 11 19 22 prmlem1 5