Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: ( 6 gcd 4 ) = ( ( 4 + 2 ) gcd 4 ) = ( 2 gcd 4 ) and ( 2 gcd 4 ) = ( 2 gcd ( 2 + 2 ) ) = ( 2 gcd 2 ) = 2 . (Contributed by AV, 27-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | 6gcd4e2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn | |
|
2 | 1 | nnzi | |
3 | 4z | |
|
4 | gcdcom | |
|
5 | 2 3 4 | mp2an | |
6 | 4cn | |
|
7 | 2cn | |
|
8 | 4p2e6 | |
|
9 | 6 7 8 | addcomli | |
10 | 9 | oveq2i | |
11 | 2z | |
|
12 | gcdadd | |
|
13 | 11 11 12 | mp2an | |
14 | 2p2e4 | |
|
15 | 14 | oveq2i | |
16 | gcdcom | |
|
17 | 11 3 16 | mp2an | |
18 | 15 17 | eqtri | |
19 | 13 18 | eqtri | |
20 | gcdid | |
|
21 | 11 20 | ax-mp | |
22 | 2re | |
|
23 | 0le2 | |
|
24 | absid | |
|
25 | 22 23 24 | mp2an | |
26 | 21 25 | eqtri | |
27 | gcdadd | |
|
28 | 3 11 27 | mp2an | |
29 | 19 26 28 | 3eqtr3ri | |
30 | 5 10 29 | 3eqtr2i | |