Metamath Proof Explorer


Theorem 8mod5e3

Description: 8 modulo 5 is 3. (Contributed by AV, 20-Nov-2025)

Ref Expression
Assertion 8mod5e3 8 mod 5 = 3

Proof

Step Hyp Ref Expression
1 5p3e8 5 + 3 = 8
2 1 eqcomi 8 = 5 + 3
3 2 oveq1i 8 mod 5 = 5 + 3 mod 5
4 3nn0 3 0
5 5nn 5
6 3lt5 3 < 5
7 addmodid 3 0 5 3 < 5 5 + 3 mod 5 = 3
8 4 5 6 7 mp3an 5 + 3 mod 5 = 3
9 3 8 eqtri 8 mod 5 = 3