| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zsubcl |
|
| 2 |
1
|
3adant1 |
|
| 3 |
|
zaddcl |
|
| 4 |
3
|
3adant2 |
|
| 5 |
|
simpl |
|
| 6 |
|
difmod0 |
|
| 7 |
2 4 5 6
|
syl2an23an |
|
| 8 |
|
zcn |
|
| 9 |
8
|
3ad2ant2 |
|
| 10 |
|
zcn |
|
| 11 |
10
|
3ad2ant3 |
|
| 12 |
|
zcn |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
9 11 13 11
|
subsubadd23 |
|
| 15 |
10
|
2timesd |
|
| 16 |
15
|
eqcomd |
|
| 17 |
16
|
3ad2ant3 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
14 18
|
eqtrd |
|
| 20 |
19
|
adantl |
|
| 21 |
20
|
oveq1d |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
|
zsubcl |
|
| 24 |
23
|
ancoms |
|
| 25 |
24
|
3adant3 |
|
| 26 |
|
2z |
|
| 27 |
26
|
a1i |
|
| 28 |
|
id |
|
| 29 |
27 28
|
zmulcld |
|
| 30 |
29
|
3ad2ant3 |
|
| 31 |
|
difmod0 |
|
| 32 |
25 30 5 31
|
syl2an23an |
|
| 33 |
22 32
|
bitrd |
|
| 34 |
9
|
adantl |
|
| 35 |
11
|
adantl |
|
| 36 |
13
|
adantl |
|
| 37 |
34 35 36 35
|
addsubsub23 |
|
| 38 |
17
|
adantl |
|
| 39 |
38
|
oveq2d |
|
| 40 |
37 39
|
eqtrd |
|
| 41 |
40
|
oveq1d |
|
| 42 |
41
|
eqeq1d |
|
| 43 |
|
summodnegmod |
|
| 44 |
25 30 5 43
|
syl2an23an |
|
| 45 |
42 44
|
bitrd |
|
| 46 |
45
|
adantr |
|
| 47 |
|
zaddcl |
|
| 48 |
47
|
3adant1 |
|
| 49 |
|
zsubcl |
|
| 50 |
49
|
3adant2 |
|
| 51 |
|
difmod0 |
|
| 52 |
48 50 5 51
|
syl2an23an |
|
| 53 |
52
|
adantr |
|
| 54 |
|
eqeq1 |
|
| 55 |
|
2t2e4 |
|
| 56 |
55
|
eqcomi |
|
| 57 |
56
|
oveq1i |
|
| 58 |
|
2cnd |
|
| 59 |
58 58 10
|
mulassd |
|
| 60 |
29
|
zcnd |
|
| 61 |
60
|
2timesd |
|
| 62 |
59 61
|
eqtrd |
|
| 63 |
57 62
|
eqtrid |
|
| 64 |
63
|
3ad2ant3 |
|
| 65 |
64
|
adantl |
|
| 66 |
65
|
oveq1d |
|
| 67 |
66
|
eqeq1d |
|
| 68 |
|
summodnegmod |
|
| 69 |
30 30 5 68
|
syl2an23an |
|
| 70 |
67 69
|
bitr2d |
|
| 71 |
54 70
|
sylan9bbr |
|
| 72 |
46 53 71
|
3bitr3d |
|
| 73 |
72
|
ex |
|
| 74 |
33 73
|
sylbid |
|
| 75 |
7 74
|
sylbird |
|