Metamath Proof Explorer


Theorem 8th4div3

Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007)

Ref Expression
Assertion 8th4div3 1843=16

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 8re 8
3 2 recni 8
4 4cn 4
5 3cn 3
6 8pos 0<8
7 2 6 gt0ne0ii 80
8 3ne0 30
9 1 3 4 5 7 8 divmuldivi 1843=1483
10 1 4 mulcomi 14=41
11 2cn 2
12 4 11 5 mul32i 423=432
13 4t2e8 42=8
14 13 oveq1i 423=83
15 12 14 eqtr3i 432=83
16 4 5 11 mulassi 432=432
17 15 16 eqtr3i 83=432
18 3t2e6 32=6
19 18 oveq2i 432=46
20 17 19 eqtri 83=46
21 10 20 oveq12i 1483=4146
22 9 21 eqtri 1843=4146
23 6re 6
24 23 recni 6
25 6pos 0<6
26 23 25 gt0ne0ii 60
27 4ne0 40
28 divcan5 16604404146=16
29 1 28 mp3an1 6604404146=16
30 24 26 4 27 29 mp4an 4146=16
31 22 30 eqtri 1843=16