| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
8re |
|- 8 e. RR |
| 3 |
2
|
recni |
|- 8 e. CC |
| 4 |
|
4cn |
|- 4 e. CC |
| 5 |
|
3cn |
|- 3 e. CC |
| 6 |
|
8pos |
|- 0 < 8 |
| 7 |
2 6
|
gt0ne0ii |
|- 8 =/= 0 |
| 8 |
|
3ne0 |
|- 3 =/= 0 |
| 9 |
1 3 4 5 7 8
|
divmuldivi |
|- ( ( 1 / 8 ) x. ( 4 / 3 ) ) = ( ( 1 x. 4 ) / ( 8 x. 3 ) ) |
| 10 |
1 4
|
mulcomi |
|- ( 1 x. 4 ) = ( 4 x. 1 ) |
| 11 |
|
2cn |
|- 2 e. CC |
| 12 |
4 11 5
|
mul32i |
|- ( ( 4 x. 2 ) x. 3 ) = ( ( 4 x. 3 ) x. 2 ) |
| 13 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 14 |
13
|
oveq1i |
|- ( ( 4 x. 2 ) x. 3 ) = ( 8 x. 3 ) |
| 15 |
12 14
|
eqtr3i |
|- ( ( 4 x. 3 ) x. 2 ) = ( 8 x. 3 ) |
| 16 |
4 5 11
|
mulassi |
|- ( ( 4 x. 3 ) x. 2 ) = ( 4 x. ( 3 x. 2 ) ) |
| 17 |
15 16
|
eqtr3i |
|- ( 8 x. 3 ) = ( 4 x. ( 3 x. 2 ) ) |
| 18 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 19 |
18
|
oveq2i |
|- ( 4 x. ( 3 x. 2 ) ) = ( 4 x. 6 ) |
| 20 |
17 19
|
eqtri |
|- ( 8 x. 3 ) = ( 4 x. 6 ) |
| 21 |
10 20
|
oveq12i |
|- ( ( 1 x. 4 ) / ( 8 x. 3 ) ) = ( ( 4 x. 1 ) / ( 4 x. 6 ) ) |
| 22 |
9 21
|
eqtri |
|- ( ( 1 / 8 ) x. ( 4 / 3 ) ) = ( ( 4 x. 1 ) / ( 4 x. 6 ) ) |
| 23 |
|
6re |
|- 6 e. RR |
| 24 |
23
|
recni |
|- 6 e. CC |
| 25 |
|
6pos |
|- 0 < 6 |
| 26 |
23 25
|
gt0ne0ii |
|- 6 =/= 0 |
| 27 |
|
4ne0 |
|- 4 =/= 0 |
| 28 |
|
divcan5 |
|- ( ( 1 e. CC /\ ( 6 e. CC /\ 6 =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( 4 x. 1 ) / ( 4 x. 6 ) ) = ( 1 / 6 ) ) |
| 29 |
1 28
|
mp3an1 |
|- ( ( ( 6 e. CC /\ 6 =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( 4 x. 1 ) / ( 4 x. 6 ) ) = ( 1 / 6 ) ) |
| 30 |
24 26 4 27 29
|
mp4an |
|- ( ( 4 x. 1 ) / ( 4 x. 6 ) ) = ( 1 / 6 ) |
| 31 |
22 30
|
eqtri |
|- ( ( 1 / 8 ) x. ( 4 / 3 ) ) = ( 1 / 6 ) |