Metamath Proof Explorer


Theorem ablcomd

Description: An abelian group operation is commutative, deduction version. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses ablcomd.1 B = Base G
ablcomd.2 + ˙ = + G
ablcomd.3 φ G Abel
ablcomd.4 φ X B
ablcomd.5 φ Y B
Assertion ablcomd φ X + ˙ Y = Y + ˙ X

Proof

Step Hyp Ref Expression
1 ablcomd.1 B = Base G
2 ablcomd.2 + ˙ = + G
3 ablcomd.3 φ G Abel
4 ablcomd.4 φ X B
5 ablcomd.5 φ Y B
6 1 2 ablcom G Abel X B Y B X + ˙ Y = Y + ˙ X
7 3 4 5 6 syl3anc φ X + ˙ Y = Y + ˙ X