Metamath Proof Explorer


Theorem ablnnncan1

Description: Cancellation law for group subtraction. ( nnncan1 analog.) (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses ablnncan.b B=BaseG
ablnncan.m -˙=-G
ablnncan.g φGAbel
ablnncan.x φXB
ablnncan.y φYB
ablsub32.z φZB
Assertion ablnnncan1 φX-˙Y-˙X-˙Z=Z-˙Y

Proof

Step Hyp Ref Expression
1 ablnncan.b B=BaseG
2 ablnncan.m -˙=-G
3 ablnncan.g φGAbel
4 ablnncan.x φXB
5 ablnncan.y φYB
6 ablsub32.z φZB
7 ablgrp GAbelGGrp
8 3 7 syl φGGrp
9 1 2 grpsubcl GGrpXBZBX-˙ZB
10 8 4 6 9 syl3anc φX-˙ZB
11 1 2 3 4 5 10 ablsub32 φX-˙Y-˙X-˙Z=X-˙X-˙Z-˙Y
12 1 2 3 4 6 ablnncan φX-˙X-˙Z=Z
13 12 oveq1d φX-˙X-˙Z-˙Y=Z-˙Y
14 11 13 eqtrd φX-˙Y-˙X-˙Z=Z-˙Y