Metamath Proof Explorer


Theorem ablo32

Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis ablcom.1 X=ranG
Assertion ablo32 GAbelOpAXBXCXAGBGC=AGCGB

Proof

Step Hyp Ref Expression
1 ablcom.1 X=ranG
2 1 ablocom GAbelOpBXCXBGC=CGB
3 2 3adant3r1 GAbelOpAXBXCXBGC=CGB
4 3 oveq2d GAbelOpAXBXCXAGBGC=AGCGB
5 ablogrpo GAbelOpGGrpOp
6 1 grpoass GGrpOpAXBXCXAGBGC=AGBGC
7 5 6 sylan GAbelOpAXBXCXAGBGC=AGBGC
8 3ancomb AXBXCXAXCXBX
9 1 grpoass GGrpOpAXCXBXAGCGB=AGCGB
10 8 9 sylan2b GGrpOpAXBXCXAGCGB=AGCGB
11 5 10 sylan GAbelOpAXBXCXAGCGB=AGCGB
12 4 7 11 3eqtr4d GAbelOpAXBXCXAGBGC=AGCGB