Metamath Proof Explorer


Theorem ablo4

Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis ablcom.1 X=ranG
Assertion ablo4 GAbelOpAXBXCXDXAGBGCGD=AGCGBGD

Proof

Step Hyp Ref Expression
1 ablcom.1 X=ranG
2 simprll GAbelOpAXBXCXDXAX
3 simprlr GAbelOpAXBXCXDXBX
4 simprrl GAbelOpAXBXCXDXCX
5 2 3 4 3jca GAbelOpAXBXCXDXAXBXCX
6 1 ablo32 GAbelOpAXBXCXAGBGC=AGCGB
7 5 6 syldan GAbelOpAXBXCXDXAGBGC=AGCGB
8 7 oveq1d GAbelOpAXBXCXDXAGBGCGD=AGCGBGD
9 ablogrpo GAbelOpGGrpOp
10 1 grpocl GGrpOpAXBXAGBX
11 10 3expb GGrpOpAXBXAGBX
12 11 adantrr GGrpOpAXBXCXDXAGBX
13 simprrl GGrpOpAXBXCXDXCX
14 simprrr GGrpOpAXBXCXDXDX
15 12 13 14 3jca GGrpOpAXBXCXDXAGBXCXDX
16 1 grpoass GGrpOpAGBXCXDXAGBGCGD=AGBGCGD
17 15 16 syldan GGrpOpAXBXCXDXAGBGCGD=AGBGCGD
18 9 17 sylan GAbelOpAXBXCXDXAGBGCGD=AGBGCGD
19 1 grpocl GGrpOpAXCXAGCX
20 19 3expb GGrpOpAXCXAGCX
21 20 adantrlr GGrpOpAXBXCXAGCX
22 21 adantrrr GGrpOpAXBXCXDXAGCX
23 simprlr GGrpOpAXBXCXDXBX
24 22 23 14 3jca GGrpOpAXBXCXDXAGCXBXDX
25 1 grpoass GGrpOpAGCXBXDXAGCGBGD=AGCGBGD
26 24 25 syldan GGrpOpAXBXCXDXAGCGBGD=AGCGBGD
27 9 26 sylan GAbelOpAXBXCXDXAGCGBGD=AGCGBGD
28 8 18 27 3eqtr3d GAbelOpAXBXCXDXAGBGCGD=AGCGBGD
29 28 3impb GAbelOpAXBXCXDXAGBGCGD=AGCGBGD