| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablcom.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
simprll |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐴 ∈ 𝑋 ) |
| 3 |
|
simprlr |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐵 ∈ 𝑋 ) |
| 4 |
|
simprrl |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐶 ∈ 𝑋 ) |
| 5 |
2 3 4
|
3jca |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) |
| 6 |
1
|
ablo32 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) ) |
| 7 |
5 6
|
syldan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) ) |
| 8 |
7
|
oveq1d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) 𝐺 𝐷 ) = ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) 𝐺 𝐷 ) ) |
| 9 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
| 10 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 11 |
10
|
3expb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 12 |
11
|
adantrr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 13 |
|
simprrl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐶 ∈ 𝑋 ) |
| 14 |
|
simprrr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐷 ∈ 𝑋 ) |
| 15 |
12 13 14
|
3jca |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) |
| 16 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) ) |
| 17 |
15 16
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) ) |
| 18 |
9 17
|
sylan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) ) |
| 19 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ) |
| 20 |
19
|
3expb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ) |
| 21 |
20
|
adantrlr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ) |
| 22 |
21
|
adantrrr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ) |
| 23 |
|
simprlr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐵 ∈ 𝑋 ) |
| 24 |
22 23 14
|
3jca |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) |
| 25 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 𝐺 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
| 26 |
24 25
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
| 27 |
9 26
|
sylan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) 𝐺 𝐷 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
| 28 |
8 18 27
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |
| 29 |
28
|
3impb |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 ( 𝐵 𝐺 𝐷 ) ) ) |