Metamath Proof Explorer


Theorem ablsimpgd

Description: An abelian group is simple if and only if its order is prime. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpgd.1 B = Base G
ablsimpgd.2 φ G Abel
Assertion ablsimpgd φ G SimpGrp B

Proof

Step Hyp Ref Expression
1 ablsimpgd.1 B = Base G
2 ablsimpgd.2 φ G Abel
3 2 adantr φ G SimpGrp G Abel
4 simpr φ G SimpGrp G SimpGrp
5 1 3 4 ablsimpgprmd φ G SimpGrp B
6 2 ablgrpd φ G Grp
7 6 adantr φ B G Grp
8 simpr φ B B
9 1 7 8 prmgrpsimpgd φ B G SimpGrp
10 5 9 impbida φ G SimpGrp B