Metamath Proof Explorer


Theorem ablsimpgd

Description: An abelian group is simple if and only if its order is prime. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpgd.1 B=BaseG
ablsimpgd.2 φGAbel
Assertion ablsimpgd φGSimpGrpB

Proof

Step Hyp Ref Expression
1 ablsimpgd.1 B=BaseG
2 ablsimpgd.2 φGAbel
3 2 adantr φGSimpGrpGAbel
4 simpr φGSimpGrpGSimpGrp
5 1 3 4 ablsimpgprmd φGSimpGrpB
6 2 ablgrpd φGGrp
7 6 adantr φBGGrp
8 simpr φBB
9 1 7 8 prmgrpsimpgd φBGSimpGrp
10 5 9 impbida φGSimpGrpB