Metamath Proof Explorer


Theorem ablsubadd

Description: Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
Assertion ablsubadd GAbelXBYBZBX-˙Y=ZY+˙Z=X

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 ablgrp GAbelGGrp
5 1 2 3 grpsubadd GGrpXBYBZBX-˙Y=ZZ+˙Y=X
6 4 5 sylan GAbelXBYBZBX-˙Y=ZZ+˙Y=X
7 1 2 ablcom GAbelYBZBY+˙Z=Z+˙Y
8 7 3adant3r1 GAbelXBYBZBY+˙Z=Z+˙Y
9 8 eqeq1d GAbelXBYBZBY+˙Z=XZ+˙Y=X
10 6 9 bitr4d GAbelXBYBZBX-˙Y=ZY+˙Z=X