Metamath Proof Explorer


Theorem ablsubsub

Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
ablsubsub.g φGAbel
ablsubsub.x φXB
ablsubsub.y φYB
ablsubsub.z φZB
Assertion ablsubsub φX-˙Y-˙Z=X-˙Y+˙Z

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 ablsubsub.g φGAbel
5 ablsubsub.x φXB
6 ablsubsub.y φYB
7 ablsubsub.z φZB
8 ablgrp GAbelGGrp
9 4 8 syl φGGrp
10 1 2 3 grpsubsub GGrpXBYBZBX-˙Y-˙Z=X+˙Z-˙Y
11 9 5 6 7 10 syl13anc φX-˙Y-˙Z=X+˙Z-˙Y
12 1 2 3 grpaddsubass GGrpXBZBYBX+˙Z-˙Y=X+˙Z-˙Y
13 9 5 7 6 12 syl13anc φX+˙Z-˙Y=X+˙Z-˙Y
14 1 2 3 abladdsub GAbelXBZBYBX+˙Z-˙Y=X-˙Y+˙Z
15 4 5 7 6 14 syl13anc φX+˙Z-˙Y=X-˙Y+˙Z
16 11 13 15 3eqtr2d φX-˙Y-˙Z=X-˙Y+˙Z