Metamath Proof Explorer


Theorem abs00

Description: The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of Gleason p. 133. (Contributed by NM, 26-Sep-2005) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion abs00 AA=0A=0

Proof

Step Hyp Ref Expression
1 absrpcl AA0A+
2 1 rpne0d AA0A0
3 2 ex AA0A0
4 3 necon4d AA=0A=0
5 fveq2 A=0A=0
6 abs0 0=0
7 5 6 eqtrdi A=0A=0
8 4 7 impbid1 AA=0A=0