Metamath Proof Explorer


Theorem abs3difd

Description: Absolute value of differences around common element. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φA
abssubd.2 φB
abs3difd.3 φC
Assertion abs3difd φABAC+CB

Proof

Step Hyp Ref Expression
1 abscld.1 φA
2 abssubd.2 φB
3 abs3difd.3 φC
4 abs3dif ABCABAC+CB
5 1 2 3 4 syl3anc φABAC+CB