| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
|
| 2 |
|
cnfldbas |
|
| 3 |
2
|
a1i |
|
| 4 |
|
cnfldadd |
|
| 5 |
4
|
a1i |
|
| 6 |
|
cnfldmul |
|
| 7 |
6
|
a1i |
|
| 8 |
|
cnfld0 |
|
| 9 |
8
|
a1i |
|
| 10 |
|
cnring |
|
| 11 |
10
|
a1i |
|
| 12 |
|
absf |
|
| 13 |
12
|
a1i |
|
| 14 |
|
abs0 |
|
| 15 |
14
|
a1i |
|
| 16 |
|
absgt0 |
|
| 17 |
16
|
biimpa |
|
| 18 |
17
|
3adant1 |
|
| 19 |
|
absmul |
|
| 20 |
19
|
ad2ant2r |
|
| 21 |
20
|
3adant1 |
|
| 22 |
|
abstri |
|
| 23 |
22
|
ad2ant2r |
|
| 24 |
23
|
3adant1 |
|
| 25 |
1 3 5 7 9 11 13 15 18 21 24
|
isabvd |
|
| 26 |
25
|
mptru |
|