Metamath Proof Explorer


Theorem abscncfALT

Description: Absolute value is continuous. Alternate proof of abscncf . (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion abscncfALT abs:cn

Proof

Step Hyp Ref Expression
1 eqid TopOpenfld=TopOpenfld
2 eqid topGenran.=topGenran.
3 1 2 abscn absTopOpenfldCntopGenran.
4 ssid
5 ax-resscn
6 1 cnfldtopon TopOpenfldTopOn
7 6 toponunii =TopOpenfld
8 7 restid TopOpenfldTopOnTopOpenfld𝑡=TopOpenfld
9 6 8 ax-mp TopOpenfld𝑡=TopOpenfld
10 9 eqcomi TopOpenfld=TopOpenfld𝑡
11 1 tgioo2 topGenran.=TopOpenfld𝑡
12 1 10 11 cncfcn cn=TopOpenfldCntopGenran.
13 4 5 12 mp2an cn=TopOpenfldCntopGenran.
14 3 13 eleqtrri abs:cn