Metamath Proof Explorer


Theorem absf

Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion absf abs:

Proof

Step Hyp Ref Expression
1 df-abs abs=xxx
2 absval xx=xx
3 abscl xx
4 2 3 eqeltrrd xxx
5 1 4 fmpti abs: