Metamath Proof Explorer


Theorem absi

Description: The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005)

Ref Expression
Assertion absi i=1

Proof

Step Hyp Ref Expression
1 ax-icn i
2 absval ii=ii
3 1 2 ax-mp i=ii
4 cji i=i
5 4 oveq2i ii=ii
6 1 1 mulneg2i ii=ii
7 ixi ii=1
8 7 negeqi ii=-1
9 negneg1e1 -1=1
10 8 9 eqtri ii=1
11 5 6 10 3eqtri ii=1
12 11 fveq2i ii=1
13 sqrt1 1=1
14 3 12 13 3eqtri i=1