Metamath Proof Explorer


Theorem absnid

Description: A negative number is the negative of its own absolute value. (Contributed by NM, 27-Feb-2005)

Ref Expression
Assertion absnid AA0A=A

Proof

Step Hyp Ref Expression
1 le0neg1 AA00A
2 recn AA
3 absneg AA=A
4 2 3 syl AA=A
5 4 adantr A0AA=A
6 renegcl AA
7 absid A0AA=A
8 6 7 sylan A0AA=A
9 5 8 eqtr3d A0AA=A
10 9 ex A0AA=A
11 1 10 sylbid AA0A=A
12 11 imp AA0A=A