Metamath Proof Explorer


Theorem abssexg

Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion abssexg AVx|xAφV

Proof

Step Hyp Ref Expression
1 pwexg AV𝒫AV
2 df-pw 𝒫A=x|xA
3 2 eleq1i 𝒫AVx|xAV
4 simpl xAφxA
5 4 ss2abi x|xAφx|xA
6 ssexg x|xAφx|xAx|xAVx|xAφV
7 5 6 mpan x|xAVx|xAφV
8 3 7 sylbi 𝒫AVx|xAφV
9 1 8 syl AVx|xAφV