Metamath Proof Explorer


Theorem absval

Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of Gleason p. 133. (Contributed by NM, 27-Jul-1999) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion absval AA=AA

Proof

Step Hyp Ref Expression
1 fveq2 x=Ax=A
2 oveq12 x=Ax=Axx=AA
3 1 2 mpdan x=Axx=AA
4 3 fveq2d x=Axx=AA
5 df-abs abs=xxx
6 fvex AAV
7 4 5 6 fvmpt AA=AA