Metamath Proof Explorer


Theorem rennim

Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013)

Ref Expression
Assertion rennim AiA+

Proof

Step Hyp Ref Expression
1 ax-icn i
2 recn AA
3 mulcl iAiA
4 1 2 3 sylancr AiA
5 rpre iA+iA
6 rereb iAiAiA=iA
7 5 6 imbitrid iAiA+iA=iA
8 4 7 syl AiA+iA=iA
9 4 addlidd A0+iA=iA
10 9 fveq2d A0+iA=iA
11 0re 0
12 crre 0A0+iA=0
13 11 12 mpan A0+iA=0
14 10 13 eqtr3d AiA=0
15 14 eqeq1d AiA=iA0=iA
16 8 15 sylibd AiA+0=iA
17 rpne0 iA+iA0
18 17 necon2bi iA=0¬iA+
19 18 eqcoms 0=iA¬iA+
20 16 19 syl6 AiA+¬iA+
21 20 pm2.01d A¬iA+
22 df-nel iA+¬iA+
23 21 22 sylibr AiA+