Metamath Proof Explorer


Theorem abvge0

Description: The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A=AbsValR
abvf.b B=BaseR
Assertion abvge0 FAXB0FX

Proof

Step Hyp Ref Expression
1 abvf.a A=AbsValR
2 abvf.b B=BaseR
3 1 2 abvfge0 FAF:B0+∞
4 3 ffvelcdmda FAXBFX0+∞
5 elrege0 FX0+∞FX0FX
6 5 simprbi FX0+∞0FX
7 4 6 syl FAXB0FX