Metamath Proof Explorer


Theorem ac6s

Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 , we derive this strong version of ac6 that doesn't require B to be a set. (Contributed by NM, 4-Feb-2004)

Ref Expression
Hypotheses ac6s.1 AV
ac6s.2 y=fxφψ
Assertion ac6s xAyBφff:ABxAψ

Proof

Step Hyp Ref Expression
1 ac6s.1 AV
2 ac6s.2 y=fxφψ
3 1 bnd2 xAyBφzzBxAyzφ
4 vex zV
5 1 4 2 ac6 xAyzφff:AzxAψ
6 5 anim2i zBxAyzφzBff:AzxAψ
7 6 eximi zzBxAyzφzzBff:AzxAψ
8 fss f:AzzBf:AB
9 8 expcom zBf:Azf:AB
10 9 anim1d zBf:AzxAψf:ABxAψ
11 10 eximdv zBff:AzxAψff:ABxAψ
12 11 imp zBff:AzxAψff:ABxAψ
13 12 exlimiv zzBff:AzxAψff:ABxAψ
14 3 7 13 3syl xAyBφff:ABxAψ