Metamath Proof Explorer


Theorem ac6s6f

Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018)

Ref Expression
Hypotheses ac6s6f.1 AV
ac6s6f.2 yψ
ac6s6f.3 y=fxφψ
ac6s6f.4 _xA
Assertion ac6s6f fxAyφψ

Proof

Step Hyp Ref Expression
1 ac6s6f.1 AV
2 ac6s6f.2 yψ
3 ac6s6f.3 y=fxφψ
4 ac6s6f.4 _xA
5 1 isseti zz=A
6 vex zV
7 2 6 3 ac6s6 fxzyφψ
8 5 7 exan zz=Afxzyφψ
9 exdistr zfz=Axzyφψzz=Afxzyφψ
10 8 9 mpbir zfz=Axzyφψ
11 nfcv _xz
12 11 4 raleqf z=AxzyφψxAyφψ
13 12 biimpa z=AxzyφψxAyφψ
14 13 2eximi zfz=AxzyφψzfxAyφψ
15 ax5e zfxAyφψfxAyφψ
16 10 14 15 mp2b fxAyφψ