Metamath Proof Explorer


Theorem ac6s6f

Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018)

Ref Expression
Hypotheses ac6s6f.1 A V
ac6s6f.2 y ψ
ac6s6f.3 y = f x φ ψ
ac6s6f.4 _ x A
Assertion ac6s6f f x A y φ ψ

Proof

Step Hyp Ref Expression
1 ac6s6f.1 A V
2 ac6s6f.2 y ψ
3 ac6s6f.3 y = f x φ ψ
4 ac6s6f.4 _ x A
5 1 isseti z z = A
6 vex z V
7 2 6 3 ac6s6 f x z y φ ψ
8 5 7 exan z z = A f x z y φ ψ
9 exdistr z f z = A x z y φ ψ z z = A f x z y φ ψ
10 8 9 mpbir z f z = A x z y φ ψ
11 nfcv _ x z
12 11 4 raleqf z = A x z y φ ψ x A y φ ψ
13 12 biimpa z = A x z y φ ψ x A y φ ψ
14 13 2eximi z f z = A x z y φ ψ z f x A y φ ψ
15 ax5e z f x A y φ ψ f x A y φ ψ
16 10 14 15 mp2b f x A y φ ψ