Metamath Proof Explorer


Theorem ac6s6f

Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018)

Ref Expression
Hypotheses ac6s6f.1 𝐴 ∈ V
ac6s6f.2 𝑦 𝜓
ac6s6f.3 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
ac6s6f.4 𝑥 𝐴
Assertion ac6s6f 𝑓𝑥𝐴 ( ∃ 𝑦 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 ac6s6f.1 𝐴 ∈ V
2 ac6s6f.2 𝑦 𝜓
3 ac6s6f.3 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
4 ac6s6f.4 𝑥 𝐴
5 1 isseti 𝑧 𝑧 = 𝐴
6 vex 𝑧 ∈ V
7 2 6 3 ac6s6 𝑓𝑥𝑧 ( ∃ 𝑦 𝜑𝜓 )
8 5 7 exan 𝑧 ( 𝑧 = 𝐴 ∧ ∃ 𝑓𝑥𝑧 ( ∃ 𝑦 𝜑𝜓 ) )
9 exdistr ( ∃ 𝑧𝑓 ( 𝑧 = 𝐴 ∧ ∀ 𝑥𝑧 ( ∃ 𝑦 𝜑𝜓 ) ) ↔ ∃ 𝑧 ( 𝑧 = 𝐴 ∧ ∃ 𝑓𝑥𝑧 ( ∃ 𝑦 𝜑𝜓 ) ) )
10 8 9 mpbir 𝑧𝑓 ( 𝑧 = 𝐴 ∧ ∀ 𝑥𝑧 ( ∃ 𝑦 𝜑𝜓 ) )
11 nfcv 𝑥 𝑧
12 11 4 raleqf ( 𝑧 = 𝐴 → ( ∀ 𝑥𝑧 ( ∃ 𝑦 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( ∃ 𝑦 𝜑𝜓 ) ) )
13 12 biimpa ( ( 𝑧 = 𝐴 ∧ ∀ 𝑥𝑧 ( ∃ 𝑦 𝜑𝜓 ) ) → ∀ 𝑥𝐴 ( ∃ 𝑦 𝜑𝜓 ) )
14 13 2eximi ( ∃ 𝑧𝑓 ( 𝑧 = 𝐴 ∧ ∀ 𝑥𝑧 ( ∃ 𝑦 𝜑𝜓 ) ) → ∃ 𝑧𝑓𝑥𝐴 ( ∃ 𝑦 𝜑𝜓 ) )
15 ax5e ( ∃ 𝑧𝑓𝑥𝐴 ( ∃ 𝑦 𝜑𝜓 ) → ∃ 𝑓𝑥𝐴 ( ∃ 𝑦 𝜑𝜓 ) )
16 10 14 15 mp2b 𝑓𝑥𝐴 ( ∃ 𝑦 𝜑𝜓 )