Step |
Hyp |
Ref |
Expression |
1 |
|
ac6s6f.1 |
⊢ 𝐴 ∈ V |
2 |
|
ac6s6f.2 |
⊢ Ⅎ 𝑦 𝜓 |
3 |
|
ac6s6f.3 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
ac6s6f.4 |
⊢ Ⅎ 𝑥 𝐴 |
5 |
1
|
isseti |
⊢ ∃ 𝑧 𝑧 = 𝐴 |
6 |
|
vex |
⊢ 𝑧 ∈ V |
7 |
2 6 3
|
ac6s6 |
⊢ ∃ 𝑓 ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → 𝜓 ) |
8 |
5 7
|
exan |
⊢ ∃ 𝑧 ( 𝑧 = 𝐴 ∧ ∃ 𝑓 ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → 𝜓 ) ) |
9 |
|
exdistr |
⊢ ( ∃ 𝑧 ∃ 𝑓 ( 𝑧 = 𝐴 ∧ ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → 𝜓 ) ) ↔ ∃ 𝑧 ( 𝑧 = 𝐴 ∧ ∃ 𝑓 ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) |
10 |
8 9
|
mpbir |
⊢ ∃ 𝑧 ∃ 𝑓 ( 𝑧 = 𝐴 ∧ ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → 𝜓 ) ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
12 |
11 4
|
raleqf |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) |
13 |
12
|
biimpa |
⊢ ( ( 𝑧 = 𝐴 ∧ ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → 𝜓 ) ) → ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝜑 → 𝜓 ) ) |
14 |
13
|
2eximi |
⊢ ( ∃ 𝑧 ∃ 𝑓 ( 𝑧 = 𝐴 ∧ ∀ 𝑥 ∈ 𝑧 ( ∃ 𝑦 𝜑 → 𝜓 ) ) → ∃ 𝑧 ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝜑 → 𝜓 ) ) |
15 |
|
ax5e |
⊢ ( ∃ 𝑧 ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝜑 → 𝜓 ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝜑 → 𝜓 ) ) |
16 |
10 14 15
|
mp2b |
⊢ ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝜑 → 𝜓 ) |