Step |
Hyp |
Ref |
Expression |
1 |
|
ac6s6.1 |
⊢ Ⅎ 𝑦 𝜓 |
2 |
|
ac6s6.2 |
⊢ 𝐴 ∈ V |
3 |
|
ac6s6.3 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
hbe1 |
⊢ ( ∃ 𝑦 𝜑 → ∀ 𝑦 ∃ 𝑦 𝜑 ) |
5 |
|
iftrue |
⊢ ( ∃ 𝑦 𝜑 → if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) = { 𝑦 ∣ 𝜑 } ) |
6 |
5
|
abeq2d |
⊢ ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) |
7 |
4 6
|
exbidh |
⊢ ( ∃ 𝑦 𝜑 → ( ∃ 𝑦 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ∃ 𝑦 𝜑 ) ) |
8 |
7
|
ibir |
⊢ ( ∃ 𝑦 𝜑 → ∃ 𝑦 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ) |
9 |
|
vex |
⊢ 𝑦 ∈ V |
10 |
9
|
exgen |
⊢ ∃ 𝑦 𝑦 ∈ V |
11 |
4
|
hbn |
⊢ ( ¬ ∃ 𝑦 𝜑 → ∀ 𝑦 ¬ ∃ 𝑦 𝜑 ) |
12 |
|
iffalse |
⊢ ( ¬ ∃ 𝑦 𝜑 → if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) = V ) |
13 |
12
|
eleq2d |
⊢ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) |
14 |
11 13
|
exbidh |
⊢ ( ¬ ∃ 𝑦 𝜑 → ( ∃ 𝑦 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ∃ 𝑦 𝑦 ∈ V ) ) |
15 |
10 14
|
mpbiri |
⊢ ( ¬ ∃ 𝑦 𝜑 → ∃ 𝑦 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ) |
16 |
8 15
|
pm2.61i |
⊢ ∃ 𝑦 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) |
17 |
16
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) |
18 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑 |
19 |
18 1
|
nfim |
⊢ Ⅎ 𝑦 ( ∃ 𝑦 𝜑 → 𝜓 ) |
20 |
|
id |
⊢ ( ¬ 𝜑 → ¬ 𝜑 ) |
21 |
20
|
a1i |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ¬ 𝜑 ) ) |
22 |
|
ax-1 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) |
23 |
|
tsim3 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ∨ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) |
24 |
23
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ¬ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ∨ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) ) |
25 |
22 24
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ¬ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
26 |
|
tsim3 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ∨ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
27 |
26
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ¬ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ∨ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) |
28 |
25 27
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ¬ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
29 |
|
tsim2 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ∃ 𝑦 𝜑 ∨ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
30 |
29
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ∃ 𝑦 𝜑 ∨ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
31 |
28 30
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ∃ 𝑦 𝜑 ) ) |
32 |
|
tsim2 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ∨ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
33 |
32
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ∨ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) |
34 |
25 33
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ) ) |
35 |
31 34
|
mpdd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ) |
36 |
|
tsbi4 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ 𝜑 ) ∨ ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ) |
37 |
36
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ 𝜑 ) ∨ ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ) ) |
38 |
35 37
|
cnfn2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ 𝜑 ) ) ) |
39 |
21 38
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ) ) |
40 |
|
tsim3 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ∨ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
41 |
40
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ¬ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ∨ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
42 |
28 41
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ¬ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
43 |
|
tsim3 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
44 |
43
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
45 |
42 44
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
46 |
|
tsbi2 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
47 |
46
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
48 |
45 47
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
49 |
39 48
|
cnf1dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) |
50 |
|
tsim2 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) ∨ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
51 |
50
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) ∨ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
52 |
42 51
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → 𝑦 = ( 𝑓 ‘ 𝑥 ) ) ) |
53 |
|
simplim |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) ) |
54 |
52 53
|
syld |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( 𝜑 ↔ 𝜓 ) ) ) |
55 |
|
tsbi3 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ( 𝜑 ∨ ¬ 𝜓 ) ∨ ¬ ( 𝜑 ↔ 𝜓 ) ) ) |
56 |
55
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ( 𝜑 ∨ ¬ 𝜓 ) ∨ ¬ ( 𝜑 ↔ 𝜓 ) ) ) ) |
57 |
54 56
|
cnfn2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( 𝜑 ∨ ¬ 𝜓 ) ) ) |
58 |
21 57
|
cnf1dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ¬ 𝜓 ) ) |
59 |
|
tsim1 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ( ¬ ∃ 𝑦 𝜑 ∨ 𝜓 ) ∨ ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) |
60 |
59
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ( ¬ ∃ 𝑦 𝜑 ∨ 𝜓 ) ∨ ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
61 |
60
|
or32dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ( ¬ ∃ 𝑦 𝜑 ∨ ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ 𝜓 ) ) ) |
62 |
58 61
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ( ¬ ∃ 𝑦 𝜑 ∨ ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
63 |
31 62
|
cnfn1dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ 𝜑 → ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) |
64 |
49 63
|
contrd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → 𝜑 ) |
65 |
64
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → 𝜑 ) ) |
66 |
|
ax-1 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) |
67 |
23
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ¬ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ∨ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) ) |
68 |
66 67
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ¬ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
69 |
26
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ¬ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ∨ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) |
70 |
68 69
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ¬ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
71 |
29
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ∃ 𝑦 𝜑 ∨ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
72 |
70 71
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ∃ 𝑦 𝜑 ) ) |
73 |
32
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ∨ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) |
74 |
68 73
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ) ) |
75 |
72 74
|
mpdd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ) |
76 |
|
tsbi3 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ 𝜑 ) ∨ ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ) |
77 |
76
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ 𝜑 ) ∨ ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) ) ) |
78 |
75 77
|
cnfn2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ 𝜑 ) ) ) |
79 |
65 78
|
cnfn2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ) ) |
80 |
40
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ¬ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ∨ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
81 |
70 80
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ¬ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
82 |
50
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) ∨ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
83 |
81 82
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → 𝑦 = ( 𝑓 ‘ 𝑥 ) ) ) |
84 |
83 53
|
syld |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( 𝜑 ↔ 𝜓 ) ) ) |
85 |
|
tsbi4 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( 𝜑 ↔ 𝜓 ) ) ) |
86 |
85
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( 𝜑 ↔ 𝜓 ) ) ) ) |
87 |
84 86
|
cnfn2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ¬ 𝜑 ∨ 𝜓 ) ) ) |
88 |
65 87
|
cnfn1dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → 𝜓 ) ) |
89 |
88
|
a1dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) |
90 |
|
tsbi1 |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
91 |
90
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
92 |
91
|
or32dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ∨ ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
93 |
89 92
|
cnfn2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
94 |
79 93
|
cnfn1dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
95 |
43
|
a1d |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
96 |
81 95
|
cnf2dd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ( ¬ ⊥ → ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
97 |
94 96
|
contrd |
⊢ ( ¬ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) → ⊥ ) |
98 |
97
|
efald2 |
⊢ ( ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
99 |
3 98
|
ax-mp |
⊢ ( ( ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝜑 ) ) → ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
100 |
6 99
|
ax-mp |
⊢ ( ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
101 |
9
|
a1i |
⊢ ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) |
102 |
|
id |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) |
103 |
|
tsim2 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ∃ 𝑦 𝜑 ∨ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) |
104 |
103
|
ord |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ¬ ∃ 𝑦 𝜑 → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) |
105 |
104
|
a1dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ¬ ∃ 𝑦 𝜑 → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) |
106 |
105
|
a1dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ¬ ∃ 𝑦 𝜑 → ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) ) |
107 |
102 106
|
mt3d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ¬ ∃ 𝑦 𝜑 ) |
108 |
107
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ⊥ → ¬ ∃ 𝑦 𝜑 ) ) |
109 |
|
simplim |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) ) |
110 |
108 109
|
syld |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ⊥ → 𝑦 ∈ V ) ) |
111 |
|
tsim2 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) ∨ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) |
112 |
111
|
ord |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) |
113 |
112
|
a1dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) ) |
114 |
102 113
|
mt3d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) ) |
115 |
108 114
|
syld |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ⊥ → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) ) |
116 |
|
id |
⊢ ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) ) |
117 |
116
|
notornotel2 |
⊢ ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → 𝑦 ∈ V ) |
118 |
117
|
a1i |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → 𝑦 ∈ V ) ) |
119 |
116
|
notornotel1 |
⊢ ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) |
120 |
119
|
a1i |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) ) |
121 |
|
tsbi3 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ 𝑦 ∈ V ) ∨ ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) ) |
122 |
121
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ 𝑦 ∈ V ) ∨ ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) ) ) |
123 |
120 122
|
cnfn2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ 𝑦 ∈ V ) ) ) |
124 |
118 123
|
cnfn2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ) ) |
125 |
|
trud |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ⊤ ) |
126 |
125
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ⊤ ) ) |
127 |
|
tsbi1 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ⊤ ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) |
128 |
127
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ⊤ ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) |
129 |
128
|
or32dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ∨ ¬ ⊤ ) ) ) |
130 |
126 129
|
cnfn2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) |
131 |
124 130
|
cnfn1dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) |
132 |
131
|
a1dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) |
133 |
132
|
a1dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) |
134 |
|
ax-1 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) ) |
135 |
|
tsim3 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ∨ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) ) |
136 |
135
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ∨ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) ) ) |
137 |
134 136
|
cnf2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) → ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) ) |
138 |
133 137
|
contrd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) ) |
139 |
138
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ⊥ → ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ∨ ¬ 𝑦 ∈ V ) ) ) |
140 |
115 139
|
cnfn1dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ( ¬ ⊥ → ¬ 𝑦 ∈ V ) ) |
141 |
110 140
|
contrd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) → ⊥ ) |
142 |
141
|
efald2 |
⊢ ( ( ¬ ∃ 𝑦 𝜑 → 𝑦 ∈ V ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) |
143 |
101 142
|
ax-mp |
⊢ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ 𝑦 ∈ V ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) |
144 |
13 143
|
ax-mp |
⊢ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) |
145 |
|
ax-1 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
146 |
|
tsim3 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ∨ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
147 |
146
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ¬ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ∨ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) |
148 |
145 147
|
cnf2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ¬ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
149 |
|
tsim2 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ∃ 𝑦 𝜑 ∨ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
150 |
149
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ¬ ∃ 𝑦 𝜑 ∨ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
151 |
148 150
|
cnf2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ¬ ∃ 𝑦 𝜑 ) ) |
152 |
|
tsim2 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ∨ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
153 |
152
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ∨ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) ) |
154 |
145 153
|
cnf2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) |
155 |
151 154
|
mpdd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) |
156 |
|
id |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
157 |
|
id |
⊢ ( ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) → ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) |
158 |
157
|
a1i |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) → ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) |
159 |
|
tsim2 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ∃ 𝑦 𝜑 ∨ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) |
160 |
159
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) → ( ∃ 𝑦 𝜑 ∨ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
161 |
158 160
|
cnf2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) → ∃ 𝑦 𝜑 ) ) |
162 |
149
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) → ( ¬ ∃ 𝑦 𝜑 ∨ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
163 |
161 162
|
cnfn1dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
164 |
163
|
a1dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) → ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
165 |
156 164
|
mt3d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ∃ 𝑦 𝜑 → 𝜓 ) ) |
166 |
165
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) |
167 |
|
tsim3 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ∨ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
168 |
167
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ¬ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ∨ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) ) |
169 |
148 168
|
cnf2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ¬ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
170 |
|
tsim3 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
171 |
170
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) ) |
172 |
169 171
|
cnf2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
173 |
|
tsbi1 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
174 |
173
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ∨ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
175 |
172 174
|
cnf2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
176 |
166 175
|
cnfn2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ¬ 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ) ) |
177 |
|
trud |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ⊤ ) |
178 |
177
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ⊤ ) ) |
179 |
|
tsbi3 |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ⊤ ) ∨ ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) |
180 |
179
|
a1d |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ⊤ ) ∨ ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) |
181 |
180
|
or32dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ∨ ¬ ⊤ ) ) ) |
182 |
178 181
|
cnfn2dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ∨ ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) ) |
183 |
176 182
|
cnf1dd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ( ¬ ⊥ → ¬ ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) ) |
184 |
155 183
|
contrd |
⊢ ( ¬ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) → ⊥ ) |
185 |
184
|
efald2 |
⊢ ( ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ⊤ ) ) → ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) ) |
186 |
144 185
|
ax-mp |
⊢ ( ¬ ∃ 𝑦 𝜑 → ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) ) |
187 |
100 186
|
pm2.61i |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) ) |
188 |
19 2 187
|
ac6s3f |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ if ( ∃ 𝑦 𝜑 , { 𝑦 ∣ 𝜑 } , V ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝜑 → 𝜓 ) ) |
189 |
17 188
|
ax-mp |
⊢ ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝜑 → 𝜓 ) |