Metamath Proof Explorer


Theorem ac6s3f

Description: Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses ac6s3f.1 𝑦 𝜓
ac6s3f.2 𝐴 ∈ V
ac6s3f.3 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
Assertion ac6s3f ( ∀ 𝑥𝐴𝑦 𝜑 → ∃ 𝑓𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 ac6s3f.1 𝑦 𝜓
2 ac6s3f.2 𝐴 ∈ V
3 ac6s3f.3 ( 𝑦 = ( 𝑓𝑥 ) → ( 𝜑𝜓 ) )
4 rexv ( ∃ 𝑦 ∈ V 𝜑 ↔ ∃ 𝑦 𝜑 )
5 4 ralbii ( ∀ 𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀ 𝑥𝐴𝑦 𝜑 )
6 5 biimpri ( ∀ 𝑥𝐴𝑦 𝜑 → ∀ 𝑥𝐴𝑦 ∈ V 𝜑 )
7 1 2 3 ac6sf ( ∀ 𝑥𝐴𝑦 ∈ V 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥𝐴 𝜓 ) )
8 exsimpr ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥𝐴 𝜓 ) → ∃ 𝑓𝑥𝐴 𝜓 )
9 6 7 8 3syl ( ∀ 𝑥𝐴𝑦 𝜑 → ∃ 𝑓𝑥𝐴 𝜓 )