Metamath Proof Explorer


Theorem ac6s3f

Description: Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses ac6s3f.1 yψ
ac6s3f.2 AV
ac6s3f.3 y=fxφψ
Assertion ac6s3f xAyφfxAψ

Proof

Step Hyp Ref Expression
1 ac6s3f.1 yψ
2 ac6s3f.2 AV
3 ac6s3f.3 y=fxφψ
4 rexv yVφyφ
5 4 ralbii xAyVφxAyφ
6 5 biimpri xAyφxAyVφ
7 1 2 3 ac6sf xAyVφff:AVxAψ
8 exsimpr ff:AVxAψfxAψ
9 6 7 8 3syl xAyφfxAψ