Metamath Proof Explorer


Theorem ac9

Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of Enderton p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013)

Ref Expression
Hypotheses ac6c4.1 AV
ac6c4.2 BV
Assertion ac9 xABxAB

Proof

Step Hyp Ref Expression
1 ac6c4.1 AV
2 ac6c4.2 BV
3 1 2 ac6c4 xABffFnAxAfxB
4 n0 xABffxAB
5 vex fV
6 5 elixp fxABfFnAxAfxB
7 6 exbii ffxABffFnAxAfxB
8 4 7 bitr2i ffFnAxAfxBxAB
9 3 8 sylib xABxAB
10 ixpn0 xABxAB
11 9 10 impbii xABxAB