Metamath Proof Explorer


Theorem ackbij1lem2

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion ackbij1lem2 ABBsucA=ABA

Proof

Step Hyp Ref Expression
1 df-suc sucA=AA
2 1 ineq2i BsucA=BAA
3 indi BAA=BABA
4 uncom BABA=BABA
5 2 3 4 3eqtri BsucA=BABA
6 snssi ABAB
7 sseqin2 ABBA=A
8 6 7 sylib ABBA=A
9 8 uneq1d ABBABA=ABA
10 5 9 eqtrid ABBsucA=ABA