Metamath Proof Explorer


Theorem ackbij1lem2

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion ackbij1lem2
|- ( A e. B -> ( B i^i suc A ) = ( { A } u. ( B i^i A ) ) )

Proof

Step Hyp Ref Expression
1 df-suc
 |-  suc A = ( A u. { A } )
2 1 ineq2i
 |-  ( B i^i suc A ) = ( B i^i ( A u. { A } ) )
3 indi
 |-  ( B i^i ( A u. { A } ) ) = ( ( B i^i A ) u. ( B i^i { A } ) )
4 uncom
 |-  ( ( B i^i A ) u. ( B i^i { A } ) ) = ( ( B i^i { A } ) u. ( B i^i A ) )
5 2 3 4 3eqtri
 |-  ( B i^i suc A ) = ( ( B i^i { A } ) u. ( B i^i A ) )
6 snssi
 |-  ( A e. B -> { A } C_ B )
7 sseqin2
 |-  ( { A } C_ B <-> ( B i^i { A } ) = { A } )
8 6 7 sylib
 |-  ( A e. B -> ( B i^i { A } ) = { A } )
9 8 uneq1d
 |-  ( A e. B -> ( ( B i^i { A } ) u. ( B i^i A ) ) = ( { A } u. ( B i^i A ) ) )
10 5 9 syl5eq
 |-  ( A e. B -> ( B i^i suc A ) = ( { A } u. ( B i^i A ) ) )