| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
| 2 |
|
ackbij.g |
|- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
| 3 |
|
ackbij.h |
|- H = U. ( rec ( G , (/) ) " _om ) |
| 4 |
|
fveq2 |
|- ( a = b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` b ) ) |
| 5 |
|
fvex |
|- ( rec ( G , (/) ) ` a ) e. _V |
| 6 |
4 5
|
f1iun |
|- ( A. a e. _om ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> _om /\ A. b e. _om ( ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) \/ ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) -> U_ a e. _om ( rec ( G , (/) ) ` a ) : U_ a e. _om ( R1 ` a ) -1-1-> _om ) |
| 7 |
1 2
|
ackbij2lem2 |
|- ( a e. _om -> ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) ) |
| 8 |
|
f1of1 |
|- ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) -> ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> ( card ` ( R1 ` a ) ) ) |
| 9 |
7 8
|
syl |
|- ( a e. _om -> ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> ( card ` ( R1 ` a ) ) ) |
| 10 |
|
ordom |
|- Ord _om |
| 11 |
|
r1fin |
|- ( a e. _om -> ( R1 ` a ) e. Fin ) |
| 12 |
|
ficardom |
|- ( ( R1 ` a ) e. Fin -> ( card ` ( R1 ` a ) ) e. _om ) |
| 13 |
11 12
|
syl |
|- ( a e. _om -> ( card ` ( R1 ` a ) ) e. _om ) |
| 14 |
|
ordelss |
|- ( ( Ord _om /\ ( card ` ( R1 ` a ) ) e. _om ) -> ( card ` ( R1 ` a ) ) C_ _om ) |
| 15 |
10 13 14
|
sylancr |
|- ( a e. _om -> ( card ` ( R1 ` a ) ) C_ _om ) |
| 16 |
|
f1ss |
|- ( ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> ( card ` ( R1 ` a ) ) /\ ( card ` ( R1 ` a ) ) C_ _om ) -> ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> _om ) |
| 17 |
9 15 16
|
syl2anc |
|- ( a e. _om -> ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> _om ) |
| 18 |
|
nnord |
|- ( a e. _om -> Ord a ) |
| 19 |
|
nnord |
|- ( b e. _om -> Ord b ) |
| 20 |
|
ordtri2or2 |
|- ( ( Ord a /\ Ord b ) -> ( a C_ b \/ b C_ a ) ) |
| 21 |
18 19 20
|
syl2an |
|- ( ( a e. _om /\ b e. _om ) -> ( a C_ b \/ b C_ a ) ) |
| 22 |
1 2
|
ackbij2lem4 |
|- ( ( ( b e. _om /\ a e. _om ) /\ a C_ b ) -> ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) ) |
| 23 |
22
|
ex |
|- ( ( b e. _om /\ a e. _om ) -> ( a C_ b -> ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) ) ) |
| 24 |
23
|
ancoms |
|- ( ( a e. _om /\ b e. _om ) -> ( a C_ b -> ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) ) ) |
| 25 |
1 2
|
ackbij2lem4 |
|- ( ( ( a e. _om /\ b e. _om ) /\ b C_ a ) -> ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) |
| 26 |
25
|
ex |
|- ( ( a e. _om /\ b e. _om ) -> ( b C_ a -> ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) |
| 27 |
24 26
|
orim12d |
|- ( ( a e. _om /\ b e. _om ) -> ( ( a C_ b \/ b C_ a ) -> ( ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) \/ ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) ) |
| 28 |
21 27
|
mpd |
|- ( ( a e. _om /\ b e. _om ) -> ( ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) \/ ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) |
| 29 |
28
|
ralrimiva |
|- ( a e. _om -> A. b e. _om ( ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) \/ ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) |
| 30 |
17 29
|
jca |
|- ( a e. _om -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> _om /\ A. b e. _om ( ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) \/ ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) ) |
| 31 |
6 30
|
mprg |
|- U_ a e. _om ( rec ( G , (/) ) ` a ) : U_ a e. _om ( R1 ` a ) -1-1-> _om |
| 32 |
|
rdgfun |
|- Fun rec ( G , (/) ) |
| 33 |
|
funiunfv |
|- ( Fun rec ( G , (/) ) -> U_ a e. _om ( rec ( G , (/) ) ` a ) = U. ( rec ( G , (/) ) " _om ) ) |
| 34 |
33
|
eqcomd |
|- ( Fun rec ( G , (/) ) -> U. ( rec ( G , (/) ) " _om ) = U_ a e. _om ( rec ( G , (/) ) ` a ) ) |
| 35 |
|
f1eq1 |
|- ( U. ( rec ( G , (/) ) " _om ) = U_ a e. _om ( rec ( G , (/) ) ` a ) -> ( U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-> _om <-> U_ a e. _om ( rec ( G , (/) ) ` a ) : U. ( R1 " _om ) -1-1-> _om ) ) |
| 36 |
32 34 35
|
mp2b |
|- ( U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-> _om <-> U_ a e. _om ( rec ( G , (/) ) ` a ) : U. ( R1 " _om ) -1-1-> _om ) |
| 37 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 38 |
37
|
simpli |
|- Fun R1 |
| 39 |
|
funiunfv |
|- ( Fun R1 -> U_ a e. _om ( R1 ` a ) = U. ( R1 " _om ) ) |
| 40 |
|
f1eq2 |
|- ( U_ a e. _om ( R1 ` a ) = U. ( R1 " _om ) -> ( U_ a e. _om ( rec ( G , (/) ) ` a ) : U_ a e. _om ( R1 ` a ) -1-1-> _om <-> U_ a e. _om ( rec ( G , (/) ) ` a ) : U. ( R1 " _om ) -1-1-> _om ) ) |
| 41 |
38 39 40
|
mp2b |
|- ( U_ a e. _om ( rec ( G , (/) ) ` a ) : U_ a e. _om ( R1 ` a ) -1-1-> _om <-> U_ a e. _om ( rec ( G , (/) ) ` a ) : U. ( R1 " _om ) -1-1-> _om ) |
| 42 |
36 41
|
bitr4i |
|- ( U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-> _om <-> U_ a e. _om ( rec ( G , (/) ) ` a ) : U_ a e. _om ( R1 ` a ) -1-1-> _om ) |
| 43 |
31 42
|
mpbir |
|- U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-> _om |
| 44 |
|
rnuni |
|- ran U. ( rec ( G , (/) ) " _om ) = U_ a e. ( rec ( G , (/) ) " _om ) ran a |
| 45 |
|
eliun |
|- ( b e. U_ a e. ( rec ( G , (/) ) " _om ) ran a <-> E. a e. ( rec ( G , (/) ) " _om ) b e. ran a ) |
| 46 |
|
df-rex |
|- ( E. a e. ( rec ( G , (/) ) " _om ) b e. ran a <-> E. a ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) ) |
| 47 |
|
funfn |
|- ( Fun rec ( G , (/) ) <-> rec ( G , (/) ) Fn dom rec ( G , (/) ) ) |
| 48 |
32 47
|
mpbi |
|- rec ( G , (/) ) Fn dom rec ( G , (/) ) |
| 49 |
|
rdgdmlim |
|- Lim dom rec ( G , (/) ) |
| 50 |
|
limomss |
|- ( Lim dom rec ( G , (/) ) -> _om C_ dom rec ( G , (/) ) ) |
| 51 |
49 50
|
ax-mp |
|- _om C_ dom rec ( G , (/) ) |
| 52 |
|
fvelimab |
|- ( ( rec ( G , (/) ) Fn dom rec ( G , (/) ) /\ _om C_ dom rec ( G , (/) ) ) -> ( a e. ( rec ( G , (/) ) " _om ) <-> E. c e. _om ( rec ( G , (/) ) ` c ) = a ) ) |
| 53 |
48 51 52
|
mp2an |
|- ( a e. ( rec ( G , (/) ) " _om ) <-> E. c e. _om ( rec ( G , (/) ) ` c ) = a ) |
| 54 |
1 2
|
ackbij2lem2 |
|- ( c e. _om -> ( rec ( G , (/) ) ` c ) : ( R1 ` c ) -1-1-onto-> ( card ` ( R1 ` c ) ) ) |
| 55 |
|
f1ofo |
|- ( ( rec ( G , (/) ) ` c ) : ( R1 ` c ) -1-1-onto-> ( card ` ( R1 ` c ) ) -> ( rec ( G , (/) ) ` c ) : ( R1 ` c ) -onto-> ( card ` ( R1 ` c ) ) ) |
| 56 |
|
forn |
|- ( ( rec ( G , (/) ) ` c ) : ( R1 ` c ) -onto-> ( card ` ( R1 ` c ) ) -> ran ( rec ( G , (/) ) ` c ) = ( card ` ( R1 ` c ) ) ) |
| 57 |
54 55 56
|
3syl |
|- ( c e. _om -> ran ( rec ( G , (/) ) ` c ) = ( card ` ( R1 ` c ) ) ) |
| 58 |
|
r1fin |
|- ( c e. _om -> ( R1 ` c ) e. Fin ) |
| 59 |
|
ficardom |
|- ( ( R1 ` c ) e. Fin -> ( card ` ( R1 ` c ) ) e. _om ) |
| 60 |
58 59
|
syl |
|- ( c e. _om -> ( card ` ( R1 ` c ) ) e. _om ) |
| 61 |
|
ordelss |
|- ( ( Ord _om /\ ( card ` ( R1 ` c ) ) e. _om ) -> ( card ` ( R1 ` c ) ) C_ _om ) |
| 62 |
10 60 61
|
sylancr |
|- ( c e. _om -> ( card ` ( R1 ` c ) ) C_ _om ) |
| 63 |
57 62
|
eqsstrd |
|- ( c e. _om -> ran ( rec ( G , (/) ) ` c ) C_ _om ) |
| 64 |
|
rneq |
|- ( ( rec ( G , (/) ) ` c ) = a -> ran ( rec ( G , (/) ) ` c ) = ran a ) |
| 65 |
64
|
sseq1d |
|- ( ( rec ( G , (/) ) ` c ) = a -> ( ran ( rec ( G , (/) ) ` c ) C_ _om <-> ran a C_ _om ) ) |
| 66 |
63 65
|
syl5ibcom |
|- ( c e. _om -> ( ( rec ( G , (/) ) ` c ) = a -> ran a C_ _om ) ) |
| 67 |
66
|
rexlimiv |
|- ( E. c e. _om ( rec ( G , (/) ) ` c ) = a -> ran a C_ _om ) |
| 68 |
53 67
|
sylbi |
|- ( a e. ( rec ( G , (/) ) " _om ) -> ran a C_ _om ) |
| 69 |
68
|
sselda |
|- ( ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) -> b e. _om ) |
| 70 |
69
|
exlimiv |
|- ( E. a ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) -> b e. _om ) |
| 71 |
|
peano2 |
|- ( b e. _om -> suc b e. _om ) |
| 72 |
|
fnfvima |
|- ( ( rec ( G , (/) ) Fn dom rec ( G , (/) ) /\ _om C_ dom rec ( G , (/) ) /\ suc b e. _om ) -> ( rec ( G , (/) ) ` suc b ) e. ( rec ( G , (/) ) " _om ) ) |
| 73 |
48 51 71 72
|
mp3an12i |
|- ( b e. _om -> ( rec ( G , (/) ) ` suc b ) e. ( rec ( G , (/) ) " _om ) ) |
| 74 |
|
vex |
|- b e. _V |
| 75 |
|
cardnn |
|- ( suc b e. _om -> ( card ` suc b ) = suc b ) |
| 76 |
|
fvex |
|- ( R1 ` suc b ) e. _V |
| 77 |
37
|
simpri |
|- Lim dom R1 |
| 78 |
|
limomss |
|- ( Lim dom R1 -> _om C_ dom R1 ) |
| 79 |
77 78
|
ax-mp |
|- _om C_ dom R1 |
| 80 |
79
|
sseli |
|- ( suc b e. _om -> suc b e. dom R1 ) |
| 81 |
|
onssr1 |
|- ( suc b e. dom R1 -> suc b C_ ( R1 ` suc b ) ) |
| 82 |
80 81
|
syl |
|- ( suc b e. _om -> suc b C_ ( R1 ` suc b ) ) |
| 83 |
|
ssdomg |
|- ( ( R1 ` suc b ) e. _V -> ( suc b C_ ( R1 ` suc b ) -> suc b ~<_ ( R1 ` suc b ) ) ) |
| 84 |
76 82 83
|
mpsyl |
|- ( suc b e. _om -> suc b ~<_ ( R1 ` suc b ) ) |
| 85 |
|
nnon |
|- ( suc b e. _om -> suc b e. On ) |
| 86 |
|
onenon |
|- ( suc b e. On -> suc b e. dom card ) |
| 87 |
85 86
|
syl |
|- ( suc b e. _om -> suc b e. dom card ) |
| 88 |
|
r1fin |
|- ( suc b e. _om -> ( R1 ` suc b ) e. Fin ) |
| 89 |
|
finnum |
|- ( ( R1 ` suc b ) e. Fin -> ( R1 ` suc b ) e. dom card ) |
| 90 |
88 89
|
syl |
|- ( suc b e. _om -> ( R1 ` suc b ) e. dom card ) |
| 91 |
|
carddom2 |
|- ( ( suc b e. dom card /\ ( R1 ` suc b ) e. dom card ) -> ( ( card ` suc b ) C_ ( card ` ( R1 ` suc b ) ) <-> suc b ~<_ ( R1 ` suc b ) ) ) |
| 92 |
87 90 91
|
syl2anc |
|- ( suc b e. _om -> ( ( card ` suc b ) C_ ( card ` ( R1 ` suc b ) ) <-> suc b ~<_ ( R1 ` suc b ) ) ) |
| 93 |
84 92
|
mpbird |
|- ( suc b e. _om -> ( card ` suc b ) C_ ( card ` ( R1 ` suc b ) ) ) |
| 94 |
75 93
|
eqsstrrd |
|- ( suc b e. _om -> suc b C_ ( card ` ( R1 ` suc b ) ) ) |
| 95 |
71 94
|
syl |
|- ( b e. _om -> suc b C_ ( card ` ( R1 ` suc b ) ) ) |
| 96 |
|
sucssel |
|- ( b e. _V -> ( suc b C_ ( card ` ( R1 ` suc b ) ) -> b e. ( card ` ( R1 ` suc b ) ) ) ) |
| 97 |
74 95 96
|
mpsyl |
|- ( b e. _om -> b e. ( card ` ( R1 ` suc b ) ) ) |
| 98 |
1 2
|
ackbij2lem2 |
|- ( suc b e. _om -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) |
| 99 |
|
f1ofo |
|- ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -onto-> ( card ` ( R1 ` suc b ) ) ) |
| 100 |
|
forn |
|- ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -onto-> ( card ` ( R1 ` suc b ) ) -> ran ( rec ( G , (/) ) ` suc b ) = ( card ` ( R1 ` suc b ) ) ) |
| 101 |
71 98 99 100
|
4syl |
|- ( b e. _om -> ran ( rec ( G , (/) ) ` suc b ) = ( card ` ( R1 ` suc b ) ) ) |
| 102 |
97 101
|
eleqtrrd |
|- ( b e. _om -> b e. ran ( rec ( G , (/) ) ` suc b ) ) |
| 103 |
|
fvex |
|- ( rec ( G , (/) ) ` suc b ) e. _V |
| 104 |
|
eleq1 |
|- ( a = ( rec ( G , (/) ) ` suc b ) -> ( a e. ( rec ( G , (/) ) " _om ) <-> ( rec ( G , (/) ) ` suc b ) e. ( rec ( G , (/) ) " _om ) ) ) |
| 105 |
|
rneq |
|- ( a = ( rec ( G , (/) ) ` suc b ) -> ran a = ran ( rec ( G , (/) ) ` suc b ) ) |
| 106 |
105
|
eleq2d |
|- ( a = ( rec ( G , (/) ) ` suc b ) -> ( b e. ran a <-> b e. ran ( rec ( G , (/) ) ` suc b ) ) ) |
| 107 |
104 106
|
anbi12d |
|- ( a = ( rec ( G , (/) ) ` suc b ) -> ( ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) <-> ( ( rec ( G , (/) ) ` suc b ) e. ( rec ( G , (/) ) " _om ) /\ b e. ran ( rec ( G , (/) ) ` suc b ) ) ) ) |
| 108 |
103 107
|
spcev |
|- ( ( ( rec ( G , (/) ) ` suc b ) e. ( rec ( G , (/) ) " _om ) /\ b e. ran ( rec ( G , (/) ) ` suc b ) ) -> E. a ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) ) |
| 109 |
73 102 108
|
syl2anc |
|- ( b e. _om -> E. a ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) ) |
| 110 |
70 109
|
impbii |
|- ( E. a ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) <-> b e. _om ) |
| 111 |
45 46 110
|
3bitri |
|- ( b e. U_ a e. ( rec ( G , (/) ) " _om ) ran a <-> b e. _om ) |
| 112 |
111
|
eqriv |
|- U_ a e. ( rec ( G , (/) ) " _om ) ran a = _om |
| 113 |
44 112
|
eqtri |
|- ran U. ( rec ( G , (/) ) " _om ) = _om |
| 114 |
|
dff1o5 |
|- ( U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-onto-> _om <-> ( U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-> _om /\ ran U. ( rec ( G , (/) ) " _om ) = _om ) ) |
| 115 |
43 113 114
|
mpbir2an |
|- U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-onto-> _om |
| 116 |
|
f1oeq1 |
|- ( H = U. ( rec ( G , (/) ) " _om ) -> ( H : U. ( R1 " _om ) -1-1-onto-> _om <-> U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-onto-> _om ) ) |
| 117 |
3 116
|
ax-mp |
|- ( H : U. ( R1 " _om ) -1-1-onto-> _om <-> U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-onto-> _om ) |
| 118 |
115 117
|
mpbir |
|- H : U. ( R1 " _om ) -1-1-onto-> _om |