Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
2 |
|
ackbij.g |
|- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
3 |
|
fveq2 |
|- ( a = (/) -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` (/) ) ) |
4 |
|
fveq2 |
|- ( a = (/) -> ( R1 ` a ) = ( R1 ` (/) ) ) |
5 |
|
2fveq3 |
|- ( a = (/) -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` (/) ) ) ) |
6 |
3 4 5
|
f1oeq123d |
|- ( a = (/) -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) ) ) |
7 |
|
fveq2 |
|- ( a = b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` b ) ) |
8 |
|
fveq2 |
|- ( a = b -> ( R1 ` a ) = ( R1 ` b ) ) |
9 |
|
2fveq3 |
|- ( a = b -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` b ) ) ) |
10 |
7 8 9
|
f1oeq123d |
|- ( a = b -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) ) |
11 |
|
fveq2 |
|- ( a = suc b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` suc b ) ) |
12 |
|
fveq2 |
|- ( a = suc b -> ( R1 ` a ) = ( R1 ` suc b ) ) |
13 |
|
2fveq3 |
|- ( a = suc b -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` suc b ) ) ) |
14 |
11 12 13
|
f1oeq123d |
|- ( a = suc b -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) |
15 |
|
fveq2 |
|- ( a = A -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` A ) ) |
16 |
|
fveq2 |
|- ( a = A -> ( R1 ` a ) = ( R1 ` A ) ) |
17 |
|
2fveq3 |
|- ( a = A -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` A ) ) ) |
18 |
15 16 17
|
f1oeq123d |
|- ( a = A -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` A ) : ( R1 ` A ) -1-1-onto-> ( card ` ( R1 ` A ) ) ) ) |
19 |
|
f1o0 |
|- (/) : (/) -1-1-onto-> (/) |
20 |
|
0ex |
|- (/) e. _V |
21 |
20
|
rdg0 |
|- ( rec ( G , (/) ) ` (/) ) = (/) |
22 |
|
f1oeq1 |
|- ( ( rec ( G , (/) ) ` (/) ) = (/) -> ( ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) ) ) |
23 |
21 22
|
ax-mp |
|- ( ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) ) |
24 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
25 |
24
|
fveq2i |
|- ( card ` ( R1 ` (/) ) ) = ( card ` (/) ) |
26 |
|
card0 |
|- ( card ` (/) ) = (/) |
27 |
25 26
|
eqtri |
|- ( card ` ( R1 ` (/) ) ) = (/) |
28 |
|
f1oeq23 |
|- ( ( ( R1 ` (/) ) = (/) /\ ( card ` ( R1 ` (/) ) ) = (/) ) -> ( (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : (/) -1-1-onto-> (/) ) ) |
29 |
24 27 28
|
mp2an |
|- ( (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : (/) -1-1-onto-> (/) ) |
30 |
23 29
|
bitri |
|- ( ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : (/) -1-1-onto-> (/) ) |
31 |
19 30
|
mpbir |
|- ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) |
32 |
1
|
ackbij1lem17 |
|- F : ( ~P _om i^i Fin ) -1-1-> _om |
33 |
32
|
a1i |
|- ( b e. _om -> F : ( ~P _om i^i Fin ) -1-1-> _om ) |
34 |
|
r1fin |
|- ( b e. _om -> ( R1 ` b ) e. Fin ) |
35 |
|
ficardom |
|- ( ( R1 ` b ) e. Fin -> ( card ` ( R1 ` b ) ) e. _om ) |
36 |
34 35
|
syl |
|- ( b e. _om -> ( card ` ( R1 ` b ) ) e. _om ) |
37 |
|
ackbij2lem1 |
|- ( ( card ` ( R1 ` b ) ) e. _om -> ~P ( card ` ( R1 ` b ) ) C_ ( ~P _om i^i Fin ) ) |
38 |
36 37
|
syl |
|- ( b e. _om -> ~P ( card ` ( R1 ` b ) ) C_ ( ~P _om i^i Fin ) ) |
39 |
|
f1ores |
|- ( ( F : ( ~P _om i^i Fin ) -1-1-> _om /\ ~P ( card ` ( R1 ` b ) ) C_ ( ~P _om i^i Fin ) ) -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( F " ~P ( card ` ( R1 ` b ) ) ) ) |
40 |
33 38 39
|
syl2anc |
|- ( b e. _om -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( F " ~P ( card ` ( R1 ` b ) ) ) ) |
41 |
1
|
ackbij1b |
|- ( ( card ` ( R1 ` b ) ) e. _om -> ( F " ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( card ` ( R1 ` b ) ) ) ) |
42 |
36 41
|
syl |
|- ( b e. _om -> ( F " ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( card ` ( R1 ` b ) ) ) ) |
43 |
|
ficardid |
|- ( ( R1 ` b ) e. Fin -> ( card ` ( R1 ` b ) ) ~~ ( R1 ` b ) ) |
44 |
|
pwen |
|- ( ( card ` ( R1 ` b ) ) ~~ ( R1 ` b ) -> ~P ( card ` ( R1 ` b ) ) ~~ ~P ( R1 ` b ) ) |
45 |
|
carden2b |
|- ( ~P ( card ` ( R1 ` b ) ) ~~ ~P ( R1 ` b ) -> ( card ` ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( R1 ` b ) ) ) |
46 |
34 43 44 45
|
4syl |
|- ( b e. _om -> ( card ` ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( R1 ` b ) ) ) |
47 |
42 46
|
eqtrd |
|- ( b e. _om -> ( F " ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( R1 ` b ) ) ) |
48 |
47
|
f1oeq3d |
|- ( b e. _om -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( F " ~P ( card ` ( R1 ` b ) ) ) <-> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) |
49 |
40 48
|
mpbid |
|- ( b e. _om -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) |
50 |
49
|
adantr |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) |
51 |
|
f1opw |
|- ( ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) ) |
52 |
51
|
adantl |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) ) |
53 |
|
f1oco |
|- ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) /\ ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) |
54 |
50 52 53
|
syl2anc |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) |
55 |
|
frsuc |
|- ( b e. _om -> ( ( rec ( G , (/) ) |` _om ) ` suc b ) = ( G ` ( ( rec ( G , (/) ) |` _om ) ` b ) ) ) |
56 |
|
peano2 |
|- ( b e. _om -> suc b e. _om ) |
57 |
56
|
fvresd |
|- ( b e. _om -> ( ( rec ( G , (/) ) |` _om ) ` suc b ) = ( rec ( G , (/) ) ` suc b ) ) |
58 |
|
fvres |
|- ( b e. _om -> ( ( rec ( G , (/) ) |` _om ) ` b ) = ( rec ( G , (/) ) ` b ) ) |
59 |
58
|
fveq2d |
|- ( b e. _om -> ( G ` ( ( rec ( G , (/) ) |` _om ) ` b ) ) = ( G ` ( rec ( G , (/) ) ` b ) ) ) |
60 |
|
fvex |
|- ( rec ( G , (/) ) ` b ) e. _V |
61 |
|
dmeq |
|- ( x = ( rec ( G , (/) ) ` b ) -> dom x = dom ( rec ( G , (/) ) ` b ) ) |
62 |
61
|
pweqd |
|- ( x = ( rec ( G , (/) ) ` b ) -> ~P dom x = ~P dom ( rec ( G , (/) ) ` b ) ) |
63 |
|
imaeq1 |
|- ( x = ( rec ( G , (/) ) ` b ) -> ( x " y ) = ( ( rec ( G , (/) ) ` b ) " y ) ) |
64 |
63
|
fveq2d |
|- ( x = ( rec ( G , (/) ) ` b ) -> ( F ` ( x " y ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) |
65 |
62 64
|
mpteq12dv |
|- ( x = ( rec ( G , (/) ) ` b ) -> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
66 |
60
|
dmex |
|- dom ( rec ( G , (/) ) ` b ) e. _V |
67 |
66
|
pwex |
|- ~P dom ( rec ( G , (/) ) ` b ) e. _V |
68 |
67
|
mptex |
|- ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) e. _V |
69 |
65 2 68
|
fvmpt |
|- ( ( rec ( G , (/) ) ` b ) e. _V -> ( G ` ( rec ( G , (/) ) ` b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
70 |
60 69
|
ax-mp |
|- ( G ` ( rec ( G , (/) ) ` b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) |
71 |
59 70
|
eqtrdi |
|- ( b e. _om -> ( G ` ( ( rec ( G , (/) ) |` _om ) ` b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
72 |
55 57 71
|
3eqtr3d |
|- ( b e. _om -> ( rec ( G , (/) ) ` suc b ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
73 |
72
|
adantr |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
74 |
|
f1odm |
|- ( ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) -> dom ( rec ( G , (/) ) ` b ) = ( R1 ` b ) ) |
75 |
74
|
adantl |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> dom ( rec ( G , (/) ) ` b ) = ( R1 ` b ) ) |
76 |
75
|
pweqd |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ~P dom ( rec ( G , (/) ) ` b ) = ~P ( R1 ` b ) ) |
77 |
76
|
mpteq1d |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) |
78 |
|
fvex |
|- ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) e. _V |
79 |
|
eqid |
|- ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) |
80 |
78 79
|
fnmpti |
|- ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) Fn ~P ( R1 ` b ) |
81 |
80
|
a1i |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) Fn ~P ( R1 ` b ) ) |
82 |
|
f1ofn |
|- ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) Fn ~P ( R1 ` b ) ) |
83 |
54 82
|
syl |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) Fn ~P ( R1 ` b ) ) |
84 |
|
f1of |
|- ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) --> ~P ( card ` ( R1 ` b ) ) ) |
85 |
52 84
|
syl |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) --> ~P ( card ` ( R1 ` b ) ) ) |
86 |
85
|
ffvelrnda |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) e. ~P ( card ` ( R1 ` b ) ) ) |
87 |
86
|
fvresd |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) = ( F ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) ) |
88 |
|
imaeq2 |
|- ( a = c -> ( ( rec ( G , (/) ) ` b ) " a ) = ( ( rec ( G , (/) ) ` b ) " c ) ) |
89 |
|
eqid |
|- ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) = ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) |
90 |
60
|
imaex |
|- ( ( rec ( G , (/) ) ` b ) " c ) e. _V |
91 |
88 89 90
|
fvmpt |
|- ( c e. ~P ( R1 ` b ) -> ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) = ( ( rec ( G , (/) ) ` b ) " c ) ) |
92 |
91
|
adantl |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) = ( ( rec ( G , (/) ) ` b ) " c ) ) |
93 |
92
|
fveq2d |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( F ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) |
94 |
87 93
|
eqtrd |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) |
95 |
|
fvco3 |
|- ( ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) --> ~P ( card ` ( R1 ` b ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ` c ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) ) |
96 |
85 95
|
sylan |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ` c ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) ) |
97 |
|
imaeq2 |
|- ( y = c -> ( ( rec ( G , (/) ) ` b ) " y ) = ( ( rec ( G , (/) ) ` b ) " c ) ) |
98 |
97
|
fveq2d |
|- ( y = c -> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) |
99 |
|
fvex |
|- ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) e. _V |
100 |
98 79 99
|
fvmpt |
|- ( c e. ~P ( R1 ` b ) -> ( ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) |
101 |
100
|
adantl |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) |
102 |
94 96 101
|
3eqtr4rd |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ` c ) = ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ` c ) ) |
103 |
81 83 102
|
eqfnfvd |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ) |
104 |
77 103
|
eqtrd |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ) |
105 |
73 104
|
eqtrd |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ) |
106 |
|
f1oeq1 |
|- ( ( rec ( G , (/) ) ` suc b ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) -> ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) |
107 |
105 106
|
syl |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) |
108 |
|
nnon |
|- ( b e. _om -> b e. On ) |
109 |
|
r1suc |
|- ( b e. On -> ( R1 ` suc b ) = ~P ( R1 ` b ) ) |
110 |
108 109
|
syl |
|- ( b e. _om -> ( R1 ` suc b ) = ~P ( R1 ` b ) ) |
111 |
110
|
fveq2d |
|- ( b e. _om -> ( card ` ( R1 ` suc b ) ) = ( card ` ~P ( R1 ` b ) ) ) |
112 |
|
f1oeq23 |
|- ( ( ( R1 ` suc b ) = ~P ( R1 ` b ) /\ ( card ` ( R1 ` suc b ) ) = ( card ` ~P ( R1 ` b ) ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) |
113 |
110 111 112
|
syl2anc |
|- ( b e. _om -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) |
114 |
113
|
adantr |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) |
115 |
107 114
|
bitrd |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) |
116 |
54 115
|
mpbird |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) |
117 |
116
|
ex |
|- ( b e. _om -> ( ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) |
118 |
6 10 14 18 31 117
|
finds |
|- ( A e. _om -> ( rec ( G , (/) ) ` A ) : ( R1 ` A ) -1-1-onto-> ( card ` ( R1 ` A ) ) ) |